Codex Task Logs

Task ID: task_e_682d3ae763fc8323811a9f1eb5ee8ec4

Environment setup
python-dateutil ------------------------------ 48.00 KiB/224.50 KiB pytest ------------------------------ 62.88 KiB/335.58 KiB greenlet ------------------------------ 60.03 KiB/589.71 KiB pyright ------------------------------ 14.90 KiB/5.31 MiB ruff ------------------------------ 143.88 KiB/11.02 MiB duckdb ------------------------------ 112.00 KiB/19.27 MiB playwright ------------------------------ 8.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) execnet ------------------------------ 32.00 KiB/39.66 KiB typing-extensions ------------------------------ 44.73 KiB/44.73 KiB pytest-xdist ------------------------------ 30.91 KiB/45.03 KiB requests ------------------------------ 14.88 KiB/63.41 KiB packaging ------------------------------ 62.88 KiB/64.91 KiB idna ------------------------------ 0 B/68.79 KiB text-unidecode ------------------------------ 76.32 KiB/76.32 KiB click ------------------------------ 99.76 KiB/99.76 KiB flask ------------------------------ 64.00 KiB/100.88 KiB urllib3 ------------------------------ 35.02 KiB/125.66 KiB jinja2 ------------------------------ 94.88 KiB/131.74 KiB charset-normalizer ------------------------------ 125.56 KiB/145.08 KiB werkzeug ------------------------------ 95.60 KiB/219.24 KiB python-dateutil ------------------------------ 48.00 KiB/224.50 KiB pytest ------------------------------ 62.88 KiB/335.58 KiB greenlet ------------------------------ 60.03 KiB/589.71 KiB pyright ------------------------------ 14.90 KiB/5.31 MiB ruff ------------------------------ 143.88 KiB/11.02 MiB duckdb ------------------------------ 112.00 KiB/19.27 MiB playwright ------------------------------ 8.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) execnet ------------------------------ 32.00 KiB/39.66 KiB pytest-xdist ------------------------------ 30.91 KiB/45.03 KiB requests ------------------------------ 30.88 KiB/63.41 KiB packaging ------------------------------ 62.88 KiB/64.91 KiB idna ------------------------------ 0 B/68.79 KiB text-unidecode ------------------------------ 76.32 KiB/76.32 KiB click ------------------------------ 99.76 KiB/99.76 KiB flask ------------------------------ 64.00 KiB/100.88 KiB urllib3 ------------------------------ 51.02 KiB/125.66 KiB jinja2 ------------------------------ 110.88 KiB/131.74 KiB charset-normalizer ------------------------------ 125.56 KiB/145.08 KiB werkzeug ------------------------------ 95.60 KiB/219.24 KiB python-dateutil ------------------------------ 48.00 KiB/224.50 KiB pytest ------------------------------ 62.88 KiB/335.58 KiB greenlet ------------------------------ 76.03 KiB/589.71 KiB pyright ------------------------------ 32.00 KiB/5.31 MiB ruff ------------------------------ 175.88 KiB/11.02 MiB duckdb ------------------------------ 112.00 KiB/19.27 MiB playwright ------------------------------ 16.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) execnet ------------------------------ 39.66 KiB/39.66 KiB pytest-xdist ------------------------------ 45.03 KiB/45.03 KiB requests ------------------------------ 30.88 KiB/63.41 KiB idna ------------------------------ 0 B/68.79 KiB text-unidecode ------------------------------ 76.32 KiB/76.32 KiB click ------------------------------ 99.76 KiB/99.76 KiB flask ------------------------------ 64.00 KiB/100.88 KiB urllib3 ------------------------------ 51.02 KiB/125.66 KiB jinja2 ------------------------------ 126.88 KiB/131.74 KiB charset-normalizer ------------------------------ 125.56 KiB/145.08 KiB werkzeug ------------------------------ 95.60 KiB/219.24 KiB python-dateutil ------------------------------ 48.00 KiB/224.50 KiB pytest ------------------------------ 76.53 KiB/335.58 KiB greenlet ------------------------------ 108.03 KiB/589.71 KiB pyright ------------------------------ 48.00 KiB/5.31 MiB ruff ------------------------------ 207.88 KiB/11.02 MiB duckdb ------------------------------ 128.00 KiB/19.27 MiB playwright ------------------------------ 16.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) execnet ------------------------------ 39.66 KiB/39.66 KiB pytest-xdist ------------------------------ 45.03 KiB/45.03 KiB requests ------------------------------ 30.88 KiB/63.41 KiB idna ------------------------------ 8.00 KiB/68.79 KiB text-unidecode ------------------------------ 76.32 KiB/76.32 KiB flask ------------------------------ 64.00 KiB/100.88 KiB urllib3 ------------------------------ 51.02 KiB/125.66 KiB jinja2 ------------------------------ 126.88 KiB/131.74 KiB charset-normalizer ------------------------------ 125.56 KiB/145.08 KiB werkzeug ------------------------------ 95.60 KiB/219.24 KiB python-dateutil ------------------------------ 48.00 KiB/224.50 KiB pytest ------------------------------ 76.53 KiB/335.58 KiB greenlet ------------------------------ 124.03 KiB/589.71 KiB pyright ------------------------------ 60.46 KiB/5.31 MiB ruff ------------------------------ 223.88 KiB/11.02 MiB duckdb ------------------------------ 144.00 KiB/19.27 MiB playwright ------------------------------ 16.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) execnet ------------------------------ 39.66 KiB/39.66 KiB pytest-xdist ------------------------------ 45.03 KiB/45.03 KiB requests ------------------------------ 30.88 KiB/63.41 KiB idna ------------------------------ 8.00 KiB/68.79 KiB flask ------------------------------ 64.00 KiB/100.88 KiB urllib3 ------------------------------ 62.72 KiB/125.66 KiB jinja2 ------------------------------ 126.88 KiB/131.74 KiB charset-normalizer ------------------------------ 141.56 KiB/145.08 KiB werkzeug ------------------------------ 111.60 KiB/219.24 KiB python-dateutil ------------------------------ 76.79 KiB/224.50 KiB pytest ------------------------------ 92.53 KiB/335.58 KiB greenlet ------------------------------ 156.03 KiB/589.71 KiB pyright ------------------------------ 92.46 KiB/5.31 MiB ruff ------------------------------ 255.88 KiB/11.02 MiB duckdb ------------------------------ 176.00 KiB/19.27 MiB playwright ------------------------------ 32.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) execnet ------------------------------ 39.66 KiB/39.66 KiB pytest-xdist ------------------------------ 45.03 KiB/45.03 KiB requests ------------------------------ 47.31 KiB/63.41 KiB idna ------------------------------ 16.00 KiB/68.79 KiB flask ------------------------------ 80.00 KiB/100.88 KiB urllib3 ------------------------------ 78.72 KiB/125.66 KiB jinja2 ------------------------------ 126.88 KiB/131.74 KiB charset-normalizer ------------------------------ 141.56 KiB/145.08 KiB werkzeug ------------------------------ 127.60 KiB/219.24 KiB python-dateutil ------------------------------ 108.79 KiB/224.50 KiB pytest ------------------------------ 108.53 KiB/335.58 KiB greenlet ------------------------------ 252.03 KiB/589.71 KiB pyright ------------------------------ 188.46 KiB/5.31 MiB ruff ------------------------------ 351.88 KiB/11.02 MiB duckdb ------------------------------ 272.00 KiB/19.27 MiB playwright ------------------------------ 32.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) pytest-xdist ------------------------------ 45.03 KiB/45.03 KiB requests ------------------------------ 47.31 KiB/63.41 KiB idna ------------------------------ 30.88 KiB/68.79 KiB flask ------------------------------ 80.00 KiB/100.88 KiB urllib3 ------------------------------ 78.72 KiB/125.66 KiB jinja2 ------------------------------ 126.88 KiB/131.74 KiB charset-normalizer ------------------------------ 141.56 KiB/145.08 KiB werkzeug ------------------------------ 127.60 KiB/219.24 KiB python-dateutil ------------------------------ 172.79 KiB/224.50 KiB pytest ------------------------------ 124.53 KiB/335.58 KiB greenlet ------------------------------ 316.03 KiB/589.71 KiB pyright ------------------------------ 236.46 KiB/5.31 MiB ruff ------------------------------ 399.88 KiB/11.02 MiB duckdb ------------------------------ 336.00 KiB/19.27 MiB playwright ------------------------------ 32.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) requests ------------------------------ 63.41 KiB/63.41 KiB idna ------------------------------ 46.88 KiB/68.79 KiB flask ------------------------------ 96.00 KiB/100.88 KiB urllib3 ------------------------------ 78.72 KiB/125.66 KiB jinja2 ------------------------------ 131.74 KiB/131.74 KiB charset-normalizer ------------------------------ 145.08 KiB/145.08 KiB werkzeug ------------------------------ 127.60 KiB/219.24 KiB python-dateutil ------------------------------ 220.79 KiB/224.50 KiB pytest ------------------------------ 140.53 KiB/335.58 KiB greenlet ------------------------------ 380.03 KiB/589.71 KiB pyright ------------------------------ 332.46 KiB/5.31 MiB ruff ------------------------------ 479.88 KiB/11.02 MiB duckdb ------------------------------ 400.00 KiB/19.27 MiB playwright ------------------------------ 40.52 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) requests ------------------------------ 63.41 KiB/63.41 KiB idna ------------------------------ 62.88 KiB/68.79 KiB flask ------------------------------ 96.00 KiB/100.88 KiB urllib3 ------------------------------ 78.72 KiB/125.66 KiB charset-normalizer ------------------------------ 145.08 KiB/145.08 KiB werkzeug ------------------------------ 127.60 KiB/219.24 KiB python-dateutil ------------------------------ 220.79 KiB/224.50 KiB pytest ------------------------------ 140.53 KiB/335.58 KiB greenlet ------------------------------ 412.03 KiB/589.71 KiB pyright ------------------------------ 348.46 KiB/5.31 MiB ruff ------------------------------ 511.88 KiB/11.02 MiB duckdb ------------------------------ 432.00 KiB/19.27 MiB playwright ------------------------------ 40.52 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) requests ------------------------------ 63.41 KiB/63.41 KiB idna ------------------------------ 68.79 KiB/68.79 KiB flask ------------------------------ 96.00 KiB/100.88 KiB urllib3 ------------------------------ 78.72 KiB/125.66 KiB werkzeug ------------------------------ 143.60 KiB/219.24 KiB python-dateutil ------------------------------ 220.79 KiB/224.50 KiB pytest ------------------------------ 140.53 KiB/335.58 KiB greenlet ------------------------------ 444.03 KiB/589.71 KiB pyright ------------------------------ 380.46 KiB/5.31 MiB ruff ------------------------------ 543.88 KiB/11.02 MiB duckdb ------------------------------ 448.00 KiB/19.27 MiB playwright ------------------------------ 40.52 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) idna ------------------------------ 68.79 KiB/68.79 KiB flask ------------------------------ 96.00 KiB/100.88 KiB urllib3 ------------------------------ 94.72 KiB/125.66 KiB werkzeug ------------------------------ 143.60 KiB/219.24 KiB python-dateutil ------------------------------ 224.50 KiB/224.50 KiB pytest ------------------------------ 172.53 KiB/335.58 KiB greenlet ------------------------------ 460.03 KiB/589.71 KiB pyright ------------------------------ 428.46 KiB/5.31 MiB ruff ------------------------------ 591.88 KiB/11.02 MiB duckdb ------------------------------ 496.00 KiB/19.27 MiB playwright ------------------------------ 56.52 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) flask ------------------------------ 100.88 KiB/100.88 KiB urllib3 ------------------------------ 94.72 KiB/125.66 KiB werkzeug ------------------------------ 143.60 KiB/219.24 KiB python-dateutil ------------------------------ 224.50 KiB/224.50 KiB pytest ------------------------------ 172.53 KiB/335.58 KiB greenlet ------------------------------ 460.03 KiB/589.71 KiB pyright ------------------------------ 460.46 KiB/5.31 MiB ruff ------------------------------ 623.88 KiB/11.02 MiB duckdb ------------------------------ 544.00 KiB/19.27 MiB playwright ------------------------------ 56.52 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) flask ------------------------------ 100.88 KiB/100.88 KiB urllib3 ------------------------------ 94.72 KiB/125.66 KiB werkzeug ------------------------------ 143.60 KiB/219.24 KiB pytest ------------------------------ 188.53 KiB/335.58 KiB greenlet ------------------------------ 460.03 KiB/589.71 KiB pyright ------------------------------ 492.46 KiB/5.31 MiB ruff ------------------------------ 655.88 KiB/11.02 MiB duckdb ------------------------------ 576.00 KiB/19.27 MiB playwright ------------------------------ 56.52 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) urllib3 ------------------------------ 94.72 KiB/125.66 KiB werkzeug ------------------------------ 143.60 KiB/219.24 KiB pytest ------------------------------ 188.53 KiB/335.58 KiB greenlet ------------------------------ 460.03 KiB/589.71 KiB pyright ------------------------------ 492.46 KiB/5.31 MiB ruff ------------------------------ 655.88 KiB/11.02 MiB duckdb ------------------------------ 592.00 KiB/19.27 MiB playwright ------------------------------ 56.52 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) urllib3 ------------------------------ 94.72 KiB/125.66 KiB werkzeug ------------------------------ 143.60 KiB/219.24 KiB pytest ------------------------------ 188.53 KiB/335.58 KiB greenlet ------------------------------ 476.03 KiB/589.71 KiB pyright ------------------------------ 588.46 KiB/5.31 MiB ruff ------------------------------ 751.88 KiB/11.02 MiB duckdb ------------------------------ 672.00 KiB/19.27 MiB playwright ------------------------------ 64.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) werkzeug ------------------------------ 191.60 KiB/219.24 KiB pytest ------------------------------ 236.53 KiB/335.58 KiB greenlet ------------------------------ 492.03 KiB/589.71 KiB pyright ------------------------------ 940.46 KiB/5.31 MiB ruff ------------------------------ 1.08 MiB/11.02 MiB duckdb ------------------------------ 1.00 MiB/19.27 MiB playwright ------------------------------ 96.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) werkzeug ------------------------------ 207.60 KiB/219.24 KiB pytest ------------------------------ 252.53 KiB/335.58 KiB greenlet ------------------------------ 492.03 KiB/589.71 KiB pyright ------------------------------ 1.03 MiB/5.31 MiB ruff ------------------------------ 1.22 MiB/11.02 MiB duckdb ------------------------------ 1.14 MiB/19.27 MiB playwright ------------------------------ 112.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) pytest ------------------------------ 268.53 KiB/335.58 KiB greenlet ------------------------------ 492.03 KiB/589.71 KiB pyright ------------------------------ 1.19 MiB/5.31 MiB ruff ------------------------------ 1.37 MiB/11.02 MiB duckdb ------------------------------ 1.30 MiB/19.27 MiB playwright ------------------------------ 112.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) pytest ------------------------------ 332.53 KiB/335.58 KiB greenlet ------------------------------ 524.03 KiB/589.71 KiB pyright ------------------------------ 1.44 MiB/5.31 MiB ruff ------------------------------ 1.76 MiB/11.02 MiB duckdb ------------------------------ 1.67 MiB/19.27 MiB playwright ------------------------------ 368.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (26/33) greenlet ------------------------------ 556.03 KiB/589.71 KiB pyright ------------------------------ 1.69 MiB/5.31 MiB ruff ------------------------------ 2.04 MiB/11.02 MiB duckdb ------------------------------ 1.97 MiB/19.27 MiB playwright ------------------------------ 667.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (26/33) greenlet ------------------------------ 572.03 KiB/589.71 KiB pyright ------------------------------ 1.78 MiB/5.31 MiB ruff ------------------------------ 2.27 MiB/11.02 MiB duckdb ------------------------------ 2.19 MiB/19.27 MiB playwright ------------------------------ 923.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (26/33) pyright ------------------------------ 1.79 MiB/5.31 MiB ruff ------------------------------ 2.81 MiB/11.02 MiB duckdb ------------------------------ 2.71 MiB/19.27 MiB playwright ------------------------------ 1.42 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (26/33) pyright ------------------------------ 1.81 MiB/5.31 MiB ruff ------------------------------ 3.08 MiB/11.02 MiB duckdb ------------------------------ 2.99 MiB/19.27 MiB playwright ------------------------------ 1.67 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (26/33) pyright ------------------------------ 1.84 MiB/5.31 MiB ruff ------------------------------ 3.81 MiB/11.02 MiB duckdb ------------------------------ 3.69 MiB/19.27 MiB playwright ------------------------------ 2.41 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (26/33) pyright ------------------------------ 1.87 MiB/5.31 MiB ruff ------------------------------ 4.53 MiB/11.02 MiB duckdb ------------------------------ 4.39 MiB/19.27 MiB playwright ------------------------------ 3.09 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 1.92 MiB/5.31 MiB ruff ------------------------------ 5.23 MiB/11.02 MiB duckdb ------------------------------ 5.09 MiB/19.27 MiB playwright ------------------------------ 3.83 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 1.95 MiB/5.31 MiB ruff ------------------------------ 6.06 MiB/11.02 MiB duckdb ------------------------------ 5.91 MiB/19.27 MiB playwright ------------------------------ 4.64 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 1.98 MiB/5.31 MiB ruff ------------------------------ 6.84 MiB/11.02 MiB duckdb ------------------------------ 6.67 MiB/19.27 MiB playwright ------------------------------ 5.41 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.02 MiB/5.31 MiB ruff ------------------------------ 7.51 MiB/11.02 MiB duckdb ------------------------------ 7.34 MiB/19.27 MiB playwright ------------------------------ 6.08 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.06 MiB/5.31 MiB ruff ------------------------------ 8.27 MiB/11.02 MiB duckdb ------------------------------ 8.09 MiB/19.27 MiB playwright ------------------------------ 6.84 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.09 MiB/5.31 MiB ruff ------------------------------ 9.05 MiB/11.02 MiB duckdb ------------------------------ 8.86 MiB/19.27 MiB playwright ------------------------------ 7.61 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.12 MiB/5.31 MiB ruff ------------------------------ 9.83 MiB/11.02 MiB duckdb ------------------------------ 9.68 MiB/19.27 MiB playwright ------------------------------ 8.40 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.14 MiB/5.31 MiB ruff ------------------------------ 10.65 MiB/11.02 MiB duckdb ------------------------------ 10.49 MiB/19.27 MiB playwright ------------------------------ 9.23 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.14 MiB/5.31 MiB duckdb ------------------------------ 10.92 MiB/19.27 MiB playwright ------------------------------ 9.66 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.16 MiB/5.31 MiB duckdb ------------------------------ 11.22 MiB/19.27 MiB playwright ------------------------------ 9.96 MiB/43.05 MiB Built scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.16 MiB/5.31 MiB duckdb ------------------------------ 11.44 MiB/19.27 MiB playwright ------------------------------ 10.17 MiB/43.05 MiB Preparing packages... (28/33) pyright ------------------------------ 2.17 MiB/5.31 MiB duckdb ------------------------------ 12.02 MiB/19.27 MiB playwright ------------------------------ 10.77 MiB/43.05 MiB Preparing packages... (28/33) pyright ------------------------------ 2.17 MiB/5.31 MiB duckdb ------------------------------ 12.93 MiB/19.27 MiB playwright ------------------------------ 11.66 MiB/43.05 MiB Preparing packages... (28/33) pyright ------------------------------ 2.19 MiB/5.31 MiB duckdb ------------------------------ 13.81 MiB/19.27 MiB playwright ------------------------------ 12.56 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.20 MiB/5.31 MiB duckdb ------------------------------ 15.06 MiB/19.27 MiB playwright ------------------------------ 13.81 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.22 MiB/5.31 MiB duckdb ------------------------------ 15.96 MiB/19.27 MiB playwright ------------------------------ 14.72 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.23 MiB/5.31 MiB duckdb ------------------------------ 17.04 MiB/19.27 MiB playwright ------------------------------ 15.84 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.25 MiB/5.31 MiB duckdb ------------------------------ 18.04 MiB/19.27 MiB playwright ------------------------------ 16.81 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.26 MiB/5.31 MiB duckdb ------------------------------ 18.94 MiB/19.27 MiB playwright ------------------------------ 17.73 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.31 MiB/5.31 MiB duckdb ------------------------------ 19.27 MiB/19.27 MiB playwright ------------------------------ 19.14 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.34 MiB/5.31 MiB playwright ------------------------------ 19.67 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.37 MiB/5.31 MiB playwright ------------------------------ 20.98 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.40 MiB/5.31 MiB playwright ------------------------------ 23.20 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.44 MiB/5.31 MiB playwright ------------------------------ 25.50 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.45 MiB/5.31 MiB playwright ------------------------------ 27.64 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.47 MiB/5.31 MiB playwright ------------------------------ 30.12 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.50 MiB/5.31 MiB playwright ------------------------------ 32.23 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.51 MiB/5.31 MiB playwright ------------------------------ 33.95 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.56 MiB/5.31 MiB playwright ------------------------------ 36.17 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.59 MiB/5.31 MiB playwright ------------------------------ 38.32 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.61 MiB/5.31 MiB playwright ------------------------------ 40.18 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.65 MiB/5.31 MiB playwright ------------------------------ 41.04 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.75 MiB/5.31 MiB playwright ------------------------------ 41.57 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.80 MiB/5.31 MiB playwright ------------------------------ 43.01 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.80 MiB/5.31 MiB Preparing packages... (31/33) pyright ------------------------------ 2.95 MiB/5.31 MiB Preparing packages... (32/33) pyright ------------------------------ 3.14 MiB/5.31 MiB Preparing packages... (32/33) pyright ------------------------------ 3.28 MiB/5.31 MiB Preparing packages... (32/33) pyright ------------------------------ 3.47 MiB/5.31 MiB Preparing packages... (32/33) pyright ------------------------------ 3.69 MiB/5.31 MiB Preparing packages... (32/33) pyright ------------------------------ 3.84 MiB/5.31 MiB Preparing packages... (32/33) pyright ------------------------------ 4.17 MiB/5.31 MiB Preparing packages... (32/33) pyright ------------------------------ 4.37 MiB/5.31 MiB Preparing packages... (32/33) pyright ------------------------------ 4.50 MiB/5.31 MiB Preparing packages... (32/33) Prepared 33 packages in 2.64s ░░░░░░░░░░░░░░░░░░░░ [0/0] Installing wheels... ░░░░░░░░░░░░░░░░░░░░ [0/33] Installing wheels... ░░░░░░░░░░░░░░░░░░░░ [0/33] markupsafe==3.0.2 ░░░░░░░░░░░░░░░░░░░░ [1/33] markupsafe==3.0.2 ░░░░░░░░░░░░░░░░░░░░ [1/33] six==1.17.0 █░░░░░░░░░░░░░░░░░░░ [2/33] six==1.17.0 █░░░░░░░░░░░░░░░░░░░ [2/33] execnet==2.1.1 █░░░░░░░░░░░░░░░░░░░ [3/33] execnet==2.1.1 █░░░░░░░░░░░░░░░░░░░ [3/33] iniconfig==2.1.0 ██░░░░░░░░░░░░░░░░░░ [4/33] iniconfig==2.1.0 ██░░░░░░░░░░░░░░░░░░ [4/33] nodeenv==1.9.1 ███░░░░░░░░░░░░░░░░░ [5/33] nodeenv==1.9.1 ███░░░░░░░░░░░░░░░░░ [5/33] pytest-base-url==2.1.0 ███░░░░░░░░░░░░░░░░░ [6/33] pytest-base-url==2.1.0 ███░░░░░░░░░░░░░░░░░ [6/33] pytest-xdist==3.6.1 ████░░░░░░░░░░░░░░░░ [7/33] pytest-xdist==3.6.1 ████░░░░░░░░░░░░░░░░ [7/33] itsdangerous==2.2.0 ████░░░░░░░░░░░░░░░░ [8/33] itsdangerous==2.2.0 ████░░░░░░░░░░░░░░░░ [8/33] pyee==13.0.0 █████░░░░░░░░░░░░░░░ [9/33] pyee==13.0.0 ███████████████████░ [32/33] pyright==1.1.400 ████████████████████ [33/33] pyright==1.1.400 Installed 33 packages in 113ms + blinker==1.9.0 + certifi==2025.4.26 + charset-normalizer==3.4.2 + click==8.2.0 + duckdb==1.2.2 + execnet==2.1.1 + flask==3.1.1 + greenlet==3.2.2 + idna==3.10 + iniconfig==2.1.0 + itsdangerous==2.2.0 + jinja2==3.1.6 + markupsafe==3.0.2 + nodeenv==1.9.1 + packaging==25.0 + playwright==1.52.0 + pluggy==1.6.0 + pyee==13.0.0 + pyright==1.1.400 + pytest==8.3.5 + pytest-base-url==2.1.0 + pytest-playwright==0.7.0 + pytest-xdist==3.6.1 + python-dateutil==2.9.0.post0 + python-slugify==8.0.4 + requests==2.32.3 + ruff==0.11.10 + scubaduck==0.1.0 (from file:///workspace/scubaduck) + six==1.17.0 + text-unidecode==1.3 + typing-extensions==4.13.2 + urllib3==2.4.0 + werkzeug==3.1.3 ++ source .venv/bin/activate +++ '[' -z '' ']' +++ '[' -n x ']' +++ SCRIPT_PATH=.venv/bin/activate +++ '[' .venv/bin/activate = /tmp/Qduigc-setup_script.sh ']' +++ deactivate nondestructive +++ unset -f pydoc +++ '[' -z '' ']' +++ '[' -z '' ']' +++ hash -r +++ '[' -z '' ']' +++ unset VIRTUAL_ENV +++ unset VIRTUAL_ENV_PROMPT +++ '[' '!' nondestructive = nondestructive ']' +++ VIRTUAL_ENV=/workspace/scubaduck/.venv +++ '[' linux-gnu = cygwin ']' +++ '[' linux-gnu = msys ']' +++ export VIRTUAL_ENV +++ '[' -z '' ']' +++ unset SCRIPT_PATH +++ _OLD_VIRTUAL_PATH=/root/.cargo/bin:/root/.rbenv/shims:/root/.rbenv/bin:/root/.rbenv/shims:/root/.local/share/swiftly/bin:/root/.bun/bin:/root/.nvm/versions/node/v22.15.1/bin:/root/.pyenv/shims:3441PYENV_ROOT/shims:/root/.pyenv/bin:/usr/local/go/bin:/root/go/bin:/root/.rbenv/bin:/root/.rbenv/shims:/root/.bun/bin:/root/.local/bin:/root/.pyenv/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin +++ PATH=/workspace/scubaduck/.venv/bin:/root/.cargo/bin:/root/.rbenv/shims:/root/.rbenv/bin:/root/.rbenv/shims:/root/.local/share/swiftly/bin:/root/.bun/bin:/root/.nvm/versions/node/v22.15.1/bin:/root/.pyenv/shims:3441PYENV_ROOT/shims:/root/.pyenv/bin:/usr/local/go/bin:/root/go/bin:/root/.rbenv/bin:/root/.rbenv/shims:/root/.bun/bin:/root/.local/bin:/root/.pyenv/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin +++ export PATH +++ '[' xscubaduck '!=' x ']' +++ VIRTUAL_ENV_PROMPT='(scubaduck) ' +++ export VIRTUAL_ENV_PROMPT +++ '[' -z '' ']' +++ '[' -z '' ']' +++ _OLD_VIRTUAL_PS1= +++ PS1='(scubaduck) ' +++ export PS1 +++ alias pydoc +++ true +++ hash -r ++ playwright install chromium Downloading Chromium 136.0.7103.25 (playwright build v1169) from https://cdn.playwright.dev/dbazure/download/playwright/builds/chromium/1169/chromium-linux.zip 167.7 MiB [] 0% 0.0s167.7 MiB [] 0% 21.4s167.7 MiB [] 0% 11.6s167.7 MiB [] 0% 8.2s167.7 MiB [] 1% 6.0s167.7 MiB [] 1% 4.8s167.7 MiB [] 2% 4.1s167.7 MiB [] 3% 3.6s167.7 MiB [] 4% 2.8s167.7 MiB [] 5% 2.6s167.7 MiB [] 6% 2.5s167.7 MiB [] 7% 2.3s167.7 MiB [] 9% 2.1s167.7 MiB [] 10% 2.0s167.7 MiB [] 11% 1.9s167.7 MiB [] 12% 1.9s167.7 MiB [] 13% 1.8s167.7 MiB [] 14% 1.8s167.7 MiB [] 15% 1.7s167.7 MiB [] 16% 1.7s167.7 MiB [] 17% 1.7s167.7 MiB [] 19% 1.6s167.7 MiB [] 20% 1.5s167.7 MiB [] 21% 1.4s167.7 MiB [] 22% 1.4s167.7 MiB [] 24% 1.4s167.7 MiB [] 25% 1.3s167.7 MiB [] 26% 1.3s167.7 MiB [] 27% 1.3s167.7 MiB [] 28% 1.3s167.7 MiB [] 30% 1.2s167.7 MiB [] 31% 1.2s167.7 MiB [] 33% 1.1s167.7 MiB [] 34% 1.1s167.7 MiB [] 35% 1.1s167.7 MiB [] 37% 1.0s167.7 MiB [] 38% 1.0s167.7 MiB [] 40% 0.9s167.7 MiB [] 41% 0.9s167.7 MiB [] 43% 0.9s167.7 MiB [] 45% 0.8s167.7 MiB [] 46% 0.8s167.7 MiB [] 48% 0.8s167.7 MiB [] 49% 0.7s167.7 MiB [] 51% 0.7s167.7 MiB [] 53% 0.7s167.7 MiB [] 55% 0.6s167.7 MiB [] 56% 0.6s167.7 MiB [] 58% 0.6s167.7 MiB [] 59% 0.6s167.7 MiB [] 60% 0.6s167.7 MiB [] 62% 0.5s167.7 MiB [] 64% 0.5s167.7 MiB [] 66% 0.5s167.7 MiB [] 67% 0.4s167.7 MiB [] 68% 0.4s167.7 MiB [] 69% 0.4s167.7 MiB [] 70% 0.4s167.7 MiB [] 72% 0.4s167.7 MiB [] 73% 0.4s167.7 MiB [] 75% 0.3s167.7 MiB [] 76% 0.3s167.7 MiB [] 78% 0.3s167.7 MiB [] 79% 0.3s167.7 MiB [] 80% 0.3s167.7 MiB [] 82% 0.2s167.7 MiB [] 83% 0.2s167.7 MiB [] 84% 0.2s167.7 MiB [] 85% 0.2s167.7 MiB [] 87% 0.2s167.7 MiB [] 88% 0.2s167.7 MiB [] 89% 0.1s167.7 MiB [] 90% 0.1s167.7 MiB [] 91% 0.1s167.7 MiB [] 92% 0.1s167.7 MiB [] 93% 0.1s167.7 MiB [] 94% 0.1s167.7 MiB [] 96% 0.1s167.7 MiB [] 97% 0.0s167.7 MiB [] 98% 0.0s167.7 MiB [] 99% 0.0s167.7 MiB [] 100% 0.0s Chromium 136.0.7103.25 (playwright build v1169) downloaded to /root/.cache/ms-playwright/chromium-1169 Downloading FFMPEG playwright build v1011 from https://cdn.playwright.dev/dbazure/download/playwright/builds/ffmpeg/1011/ffmpeg-linux.zip 2.3 MiB [] 0% 0.0s2.3 MiB [] 5% 0.3s2.3 MiB [] 15% 0.2s2.3 MiB [] 34% 0.1s2.3 MiB [] 47% 0.1s2.3 MiB [] 100% 0.0s FFMPEG playwright build v1011 downloaded to /root/.cache/ms-playwright/ffmpeg-1011 Downloading Chromium Headless Shell 136.0.7103.25 (playwright build v1169) from https://cdn.playwright.dev/dbazure/download/playwright/builds/chromium/1169/chromium-headless-shell-linux.zip 101.4 MiB [] 0% 0.0s101.4 MiB [] 0% 17.3s101.4 MiB [] 0% 20.7s101.4 MiB [] 0% 14.0s101.4 MiB [] 0% 10.0s101.4 MiB [] 1% 7.5s101.4 MiB [] 1% 5.2s101.4 MiB [] 3% 3.4s101.4 MiB [] 4% 2.9s101.4 MiB [] 6% 2.4s101.4 MiB [] 7% 2.0s101.4 MiB [] 9% 1.9s101.4 MiB [] 10% 1.8s101.4 MiB [] 11% 1.7s101.4 MiB [] 14% 1.4s101.4 MiB [] 16% 1.3s101.4 MiB [] 19% 1.1s101.4 MiB [] 22% 1.0s101.4 MiB [] 24% 0.9s101.4 MiB [] 27% 0.8s101.4 MiB [] 29% 0.8s101.4 MiB [] 31% 0.8s101.4 MiB [] 33% 0.7s101.4 MiB [] 35% 0.7s101.4 MiB [] 38% 0.6s101.4 MiB [] 41% 0.6s101.4 MiB [] 43% 0.6s101.4 MiB [] 45% 0.5s101.4 MiB [] 47% 0.5s101.4 MiB [] 51% 0.5s101.4 MiB [] 55% 0.4s101.4 MiB [] 56% 0.4s101.4 MiB [] 59% 0.4s101.4 MiB [] 61% 0.3s101.4 MiB [] 64% 0.3s101.4 MiB [] 67% 0.3s101.4 MiB [] 69% 0.3s101.4 MiB [] 71% 0.2s101.4 MiB [] 75% 0.2s101.4 MiB [] 78% 0.2s101.4 MiB [] 81% 0.1s101.4 MiB [] 84% 0.1s101.4 MiB [] 87% 0.1s101.4 MiB [] 89% 0.1s101.4 MiB [] 91% 0.1s101.4 MiB [] 94% 0.0s101.4 MiB [] 97% 0.0s101.4 MiB [] 99% 0.0s101.4 MiB [] 100% 0.0s Chromium Headless Shell 136.0.7103.25 (playwright build v1169) downloaded to /root/.cache/ms-playwright/chromium_headless_shell-1169 ++ echo 'source .venv/bin/activate'
Internet turned off
Table functionality is broken and our tests aren't catching it. Let's write a test that closely mimics how a user interacts with the UI. This is what the test should do: 1. Load the main page with empty query 2. Switch view to Table 3. Dive and validate the results. Because the Group By field is empty but we have an aggregate function, this should cause us to return only a single row, with the first column being the number of rows in the table (4 on the test dataset), and then averages for all the columns that were selected (there are two). Right now, this display is buggy because Hits is rendered as a timestamp (rather than 4 (100%)), the timestamps appear to have been averaged incorrectly, and the value column is blank. This is because the returned data didn't actually populate hits. Duckdb does not directly support AVG on timestamptz fields, so the fields must be coerced to integers, which can be averaged, and then coerced back into timestamps. After writing the test and showing that it fails, fix the bugs to make the test pass.

I'll start by reading the AGENTS.md file located at the repo's root.

shell
bash: .venv/bin/activate: No such file or directory root@947ba2ae34e4:/workspace# ls scubaduck

Switching to the scubaduck directory now.

shell
root@947ba2ae34e4:/workspace# cd scubaduck root@947ba2ae34e4:/workspace/scubaduck# ls AGENTS.md codex_setup.sh scubaduck tests README.md pyproject.toml stubs uv.lock

I'll review AGENTS.md for any relevant instructions or guidelines.

shell
root@947ba2ae34e4:/workspace/scubaduck# cat AGENTS.md - Use "source .venv/bin/activate" to activate the virtual environment before running any commands - ONLY use non-interactive commands like cat, sed, apply_patch to do edits. Do NOT use interactive editors. - Do NOT attempt to install packages. Only the packages specified in pyproject.toml are available. You cannot add new packages. If you desperately want another package, make a note of it in the final PR description. - Use conventional commits to format PR title - There are no nested AGENTS.md files, this is the only agents file - When using Playwright, ONLY use chromium browser. This browser is already installed. - Use "ruff check" to check lint, "ruff format" to autoformat files and "pyright" to typecheck. - When writing the PR description, include the original prompt supplied by the user. - When you add functionality to the server, add server tests to tests/test_server.py. When you add features to the frontend, add frontend tests to tests/test_web.py

I'll activate the .venv environment, then inspect the repo and tests to understand the setup.

shell
root@947ba2ae34e4:/workspace/scubaduck# ls tests conftest.py test_server.py test_web.py

I'm starting with the test file tests/test_web.py.

shell
root@947ba2ae34e4:/workspace/scubaduck# sed -n '1,160p' tests/test_web.py from __future__ import annotations from typing import Any def select_value(page: Any, selector: str, value: str) -> None: page.evaluate( "arg => setSelectValue(arg.sel, arg.val)", {"sel": selector, "val": value}, ) def run_query( page: Any, url: str, *, start: str | None = None, end: str | None = None, order_by: str | None = None, order_dir: str | None = "ASC", limit: int | None = None, group_by: list[str] | None = None, aggregate: str | None = None, ) -> dict[str, Any]: page.goto(url) page.wait_for_selector("#order_by option", state="attached") page.wait_for_selector("#order_dir", state="attached") page.wait_for_function("window.lastResults !== undefined") if start is not None: page.fill("#start", start) if end is not None: page.fill("#end", end) if order_by is not None: select_value(page, "#order_by", order_by) if order_dir is not None and order_dir == "DESC": page.click("#order_dir") if limit is not None: page.fill("#limit", str(limit)) if group_by is not None: select_value(page, "#graph_type", "table") page.evaluate( "g => { groupBy.chips = g; groupBy.renderChips(); }", group_by, ) if aggregate is not None: select_value(page, "#graph_type", "table") select_value(page, "#aggregate", aggregate) page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") return page.evaluate("window.lastResults") def test_range_filters(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-02 00:00:00", end="2024-01-02 04:00:00", order_by="timestamp", limit=100, ) assert len(data["rows"]) == 2 from dateutil import parser timestamps = [parser.parse(row[0]).replace(tzinfo=None) for row in data["row s"]] assert timestamps == [ parser.parse("2024-01-02 00:00:00"), parser.parse("2024-01-02 03:00:00"), ] def test_order_by(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="value", order_dir="DESC", limit=100, ) values = [row[2] for row in data["rows"]] assert values == sorted(values, reverse=True) def test_limit(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="timestamp", limit=2, ) assert len(data["rows"]) == 2 def test_simple_filter(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Add Filter") filter_el = page.query_selector("#filters .filter:last-child") assert filter_el page.evaluate( "arg => setSelectValue(arg.el.querySelector('.f-col'), arg.val)", {"el": filter_el, "val": "user"}, ) val_input = filter_el.query_selector(".f-val") val_input.click() page.keyboard.type("alice") page.keyboard.press("Enter") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") data = page.evaluate("window.lastResults") assert len(data["rows"]) == 2 assert all(row[3] == "alice" for row in data["rows"]) def test_default_filter_and_layout(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") count = page.evaluate("document.querySelectorAll('#filters .filter').length" ) assert count == 1 last_is_button = page.evaluate( "document.querySelector('#filters').lastElementChild.id === 'add_filter' " ) assert last_is_button position = page.evaluate( "getComputedStyle(document.querySelector('#filters .filter button.remove ')).position" ) assert position == "static" def test_header_and_tabs(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") header = page.text_content("#header") assert "sample.csv" in header assert "events" in header assert page.is_visible("#settings") assert page.is_hidden("#columns") page.click("text=Columns") assert page.is_visible("#columns") cols = [c.strip() for c in page.locator("#column_groups li").all_inner_texts ()] assert "timestamp" in cols assert "event" in cols page.click("text=View Settings") assert page.is_visible("#settings") btn_color = page.evaluate( "getComputedStyle(document.querySelector('#dive')).backgroundColor" ) assert "rgb(0, 128, 0)" == btn_color sidebar_overflow = page.evaluate( "getComputedStyle(document.querySelector('#sidebar')).overflowY" )
root@947ba2ae34e4:/workspace/scubaduck# sed -n '160,320p' tests/test_web.py ) view_overflow = page.evaluate( "getComputedStyle(document.querySelector('#view')).overflowY" ) assert sidebar_overflow == "auto" assert view_overflow == "auto" def test_graph_type_table_fields(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#graph_type", state="attached") select_value(page, "#graph_type", "table") assert page.is_visible("#group_by_field") assert page.is_visible("#aggregate_field") assert page.is_visible("#show_hits_field") page.click("text=Columns") assert not page.is_visible("text=Strings:") def test_help_and_alignment(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") titles = page.evaluate( "Array.from(document.querySelectorAll('#settings .help')).map(e => e.tit le)" ) assert any("start/end of the time range" in t for t in titles) text_align = page.evaluate( "getComputedStyle(document.querySelector('#settings label')).textAlign" ) assert text_align == "right" def test_table_sorting(page: Any, server_url: str) -> None: run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="timestamp", order_dir="ASC", limit=100, ) # header alignment align = page.evaluate( "getComputedStyle(document.querySelector('#results th')).textAlign" ) assert align == "right" header = page.locator("#results th").nth(3) def values() -> list[str]: return page.locator("#results td:nth-child(4)").all_inner_texts() orig_rows = values() assert orig_rows == ["alice", "bob", "alice", "charlie"] first_sql = page.evaluate("window.lastResults.sql") header.click() assert values() == sorted(orig_rows) assert header.inner_text().endswith("▲") color = page.evaluate( "getComputedStyle(document.querySelector('#results th:nth-child(4)')).co lor" ) assert "0, 0, 255" in color assert page.evaluate("window.lastResults.sql") == first_sql header.click() assert values() == sorted(orig_rows, reverse=True) assert header.inner_text().endswith("▼") header.click() assert values() == orig_rows assert header.inner_text() == "user" color = page.evaluate( "getComputedStyle(document.querySelector('#results th:nth-child(4)')).co lor" ) assert "0, 0, 255" not in color def test_relative_dropdown(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") btn = page.query_selector('[data-target="start-select"]') assert btn btn.click() page.click("#start-select div:text('-3 hours')") assert page.input_value("#start") == "-3 hours" def test_end_dropdown_now(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click('[data-target="end-select"]') page.click("#end-select div:text('now')") assert page.input_value("#end") == "now" def test_invalid_time_error_shown(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="nonsense", end="now", order_by="timestamp", ) assert "error" in data msg = page.text_content("#view") assert "nonsense" in msg def test_query_error_shown(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="timestamp", group_by=["user"], aggregate="Avg", ) assert "error" in data msg = page.text_content("#view") assert "Aggregate avg" in msg def test_column_toggle_and_selection(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Columns") page.wait_for_selector("#column_groups input", state="attached") count = page.evaluate( "document.querySelectorAll('#column_groups input:checked').length" ) assert count == 4 page.click("#columns_none") count = page.evaluate( "document.querySelectorAll('#column_groups input:checked').length" ) assert count == 0 page.click("#columns_all") count = page.evaluate( "document.querySelectorAll('#column_groups input:checked').length" ) assert count == 4 page.uncheck("#column_groups input[value='value']") page.click("text=View Settings") page.fill("#start", "2024-01-01 00:00:00") page.fill("#end", "2024-01-02 00:00:00") select_value(page, "#order_by", "timestamp") page.fill("#limit", "10") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") data = page.evaluate("window.lastResults") assert len(data["rows"][0]) == 3 headers = page.locator("#results th").all_inner_texts()
root@947ba2ae34e4:/workspace/scubaduck# sed -n '320,640p' tests/test_web.py headers = page.locator("#results th").all_inner_texts() assert "value" not in headers def test_columns_links_alignment(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Columns") page.wait_for_selector("#column_groups input", state="attached") tag = page.evaluate("document.getElementById('columns_all').tagName") assert tag == "A" align = page.evaluate( "getComputedStyle(document.querySelector('#column_actions')).textAlign" ) assert align == "right" def test_column_group_links(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Columns") page.wait_for_selector("#column_groups a", state="attached") tag = page.evaluate("document.querySelector('#column_groups .col-group a').t agName") assert tag == "A" def test_column_group_links_float_right(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Columns") page.wait_for_selector("#column_groups .col-group .links", state="attached") float_val = page.evaluate( "getComputedStyle(document.querySelector('#column_groups .col-group .lin ks')).float" ) assert float_val == "right" def test_chip_dropdown_navigation(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Add Filter") f = page.query_selector("#filters .filter:last-child") assert f page.evaluate( "arg => setSelectValue(arg.el.querySelector('.f-col'), arg.val)", {"el": f, "val": "user"}, ) inp = f.query_selector(".f-val") inp.click() page.wait_for_selector("#filters .filter:last-child .chip-dropdown div") page.keyboard.type("ali") page.wait_for_selector("text=alice") page.keyboard.press("ArrowDown") page.keyboard.press("Enter") chips = page.evaluate( "Array.from(document.querySelectorAll('#filters .filter:last-child .chip ')).map(c => c.firstChild.textContent)" ) assert chips == ["ali"] page.click("#filters .filter:last-child .chip .x") page.wait_for_selector(".chip", state="detached") def test_chip_copy_and_paste(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.evaluate( "Object.defineProperty(navigator, 'clipboard', {value:{ _data: '', write Text(t){ this._data = t; }, readText(){ return Promise.resolve(this._data); } }} )" ) page.click("text=Add Filter") f = page.query_selector("#filters .filter:last-child") assert f page.evaluate( "arg => setSelectValue(arg.el.querySelector('.f-col'), arg.val)", {"el": f, "val": "user"}, ) inp = f.query_selector(".f-val") inp.click() page.keyboard.type("alice") page.keyboard.press("Enter") page.keyboard.type("bob") page.keyboard.press("Enter") f.query_selector(".chip-copy").click() assert page.evaluate("navigator.clipboard._data") == "alice,bob" page.evaluate( "var f=document.querySelector('#filters .filter:last-child'); f.chips=[] ; f.querySelectorAll('.chip').forEach(c=>c.remove())" ) page.wait_for_selector("#filters .chip", state="detached") inp.click() page.evaluate( "var dt=new DataTransfer(); dt.setData('text/plain','alice,bob'); var e= new ClipboardEvent('paste',{clipboardData:dt}); document.querySelector('#filters .filter:last-child .f-val').dispatchEvent(e);" ) chips = page.evaluate( "Array.from(document.querySelectorAll('#filters .filter:last-child .chip ')).map(c => c.firstChild.textContent)" ) assert chips[:2] == ["alice", "bob"] page.evaluate( "var f=document.querySelector('#filters .filter:last-child'); f.chips=[] ; f.querySelectorAll('.chip').forEach(c=>c.remove())" ) page.wait_for_selector("#filters .chip", state="detached") inp.click() page.evaluate( "var dt=new DataTransfer(); dt.setData('text/plain','alice,bob'); var e= new ClipboardEvent('paste',{clipboardData:dt}); Object.defineProperty(e,'shiftKe y',{value:true}); document.querySelector('#filters .filter:last-child .f-val').d ispatchEvent(e);" ) chips = page.evaluate( "Array.from(document.querySelectorAll('#filters .filter:last-child .chip ')).map(c => c.firstChild.textContent)" ) assert chips[-1] == "alice,bob" ... run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-02 00:00:00", order_by="timestamp", limit=1, ) cell = page.text_content("#results td") assert cell != "Invalid Date" valid = page.evaluate("v => !isNaN(Date.parse(v))", cell) assert valid def test_url_query_persistence(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.wait_for_function("window.lastResults !== undefined") page.fill("#start", "2024-01-01 00:00:00") page.fill("#end", "2024-01-02 00:00:00") page.fill("#limit", "1") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") first_url = page.url first_rows = page.evaluate("window.lastResults.rows.length") page.fill("#limit", "2") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") second_url = page.url second_rows = page.evaluate("window.lastResults.rows.length") assert second_rows != first_rows assert first_url != second_url page.go_back() page.wait_for_function("window.lastResults !== undefined") assert page.url == first_url assert page.evaluate("window.lastResults.rows.length") == first_rows def test_load_from_url(page: Any, server_url: str) -> None: url = ( f"{server_url}?start=2024-01-01%2000:00:00&end=2024-01-02%2000:00:00" "&order_by=timestamp&limit=2" ) page.goto(url) page.wait_for_selector("#order_by option", state="attached") page.wait_for_function("window.lastResults !== undefined") assert page.input_value("#start") == "2024-01-01 00:00:00" assert page.input_value("#end") == "2024-01-02 00:00:00" assert page.input_value("#limit") == "2" assert page.evaluate("window.lastResults.rows.length") == 2 def test_empty_data_message(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2025-01-01 00:00:00", end="2025-01-02 00:00:00", order_by="timestamp", limit=100, ) assert data["rows"] == [] msg = page.text_content("#view") assert "Empty data provided to table" in msg def test_group_by_chip_from_url(page: Any, server_url: str) -> None: url = f"{server_url}?graph_type=table&group_by=user&order_by=user&limit=10" page.goto(url) page.wait_for_selector("#group_by_field .chip", state="attached") chips = page.evaluate( "Array.from(document.querySelectorAll('#group_by_field .chip')).map(c => c.firstChild.textContent)" ) assert chips == ["user"] def test_group_by_autocomplete(page: Any, server_url: str) -> None: page.goto(f"{server_url}?graph_type=table") page.wait_for_selector("#group_by_field", state="visible") inp = page.query_selector("#group_by_field .f-val") assert inp inp.click() page.keyboard.type("us") page.wait_for_selector("#group_by_field .chip-dropdown div") options = page.locator("#group_by_field .chip-dropdown div").all_inner_texts () assert "user" in options def test_group_by_copy_icon(page: Any, server_url: str) -> None: page.goto(f"{server_url}?graph_type=table") page.wait_for_selector("#group_by_field", state="visible") icon = page.text_content("#group_by_field .chip-copy") assert icon == "⎘" def test_group_by_input_no_border(page: Any, server_url: str) -> None: page.goto(f"{server_url}?graph_type=table") page.wait_for_selector("#group_by_field", state="visible") border = page.evaluate( "getComputedStyle(document.querySelector('#group_by_field .f-val')).bord erStyle" ) assert border == "none" def test_table_group_by_query(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="timestamp", limit=100, group_by=["user"], aggregate="Count", ) assert "error" not in data assert len(data["rows"]) == 3

I'll scroll further to check the remaining tests toward the end.

shell
root@947ba2ae34e4:/workspace/scubaduck# sed -n '640,960p' tests/test_web.py

I'll check the file length to confirm where it was truncated.

shell
root@947ba2ae34e4:/workspace/scubaduck# wc -l tests/test_web.py 620 tests/test_web.py

I need to add a test for a table with group-by empty and aggregate function.

shell
root@947ba2ae34e4:/workspace/scubaduck# ls scubaduck __init__.py sample.csv server.py static

Going to open the server.py file now. Let's check what's inside!

shell
root@947ba2ae34e4:/workspace/scubaduck# sed -n '1,200p' scubaduck/server.py from __future__ import annotations from dataclasses import dataclass, field from typing import Any, Dict, List, Tuple import re from datetime import datetime, timedelta, timezone import time from pathlib import Path import sqlite3 import traceback import duckdb from dateutil import parser as dtparser from flask import Flask, jsonify, request, send_from_directory @dataclass class Filter: column: str op: str value: str | int | float | list[str] | None @dataclass class QueryParams: start: str | None = None end: str | None = None order_by: str | None = None order_dir: str = "ASC" limit: int | None = None columns: list[str] = field(default_factory=lambda: []) filters: list[Filter] = field(default_factory=lambda: []) derived_columns: dict[str, str] = field(default_factory=lambda: {}) graph_type: str = "samples" group_by: list[str] = field(default_factory=lambda: []) aggregate: str | None = None show_hits: bool = False def _load_database(path: Path) -> duckdb.DuckDBPyConnection: ext = path.suffix.lower() if ext == ".csv": con = duckdb.connect() con.execute( f"CREATE TABLE events AS SELECT * FROM read_csv_auto('{path.as_posix ()}')" ) elif ext in {".db", ".sqlite"}: con = duckdb.connect() sconn = sqlite3.connect(path) info = sconn.execute("PRAGMA table_info(events)").fetchall() col_defs = ", ".join(f"{r[1]} {r[2]}" for r in info) con.execute(f"CREATE TABLE events ({col_defs})") placeholders = ",".join("?" for _ in info) for row in sconn.execute("SELECT * FROM events"): con.execute(f"INSERT INTO events VALUES ({placeholders})", row) sconn.close() else: con = duckdb.connect(path) return con _REL_RE = re.compile( r"([+-]?\d+(?:\.\d*)?)\s*(hour|hours|day|days|week|weeks|fortnight|fortnight s)", re.IGNORECASE, ) def parse_time(val: str | None) -> str | None: """Parse an absolute or relative time string into ``YYYY-MM-DD HH:MM:SS``."" " if val is None or val == "": return None s = val.strip() if s.lower() == "now": dt = datetime.now(timezone.utc) return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S") m = _REL_RE.fullmatch(s) if m: qty = float(m.group(1)) unit = m.group(2).lower() delta: timedelta if unit.startswith("hour"): delta = timedelta(hours=qty) elif unit.startswith("day"): delta = timedelta(days=qty) elif unit.startswith("week"): delta = timedelta(weeks=qty) elif unit.startswith("fortnight"): delta = timedelta(weeks=2 * qty) else: # pragma: no cover - defensive raise ValueError(f"Unsupported unit: {unit}") dt = datetime.now(timezone.utc) + delta return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S") dt = dtparser.parse(s) return dt.replace(microsecond=0, tzinfo=None).strftime("%Y-%m-%d %H:%M:%S") def build_query(params: QueryParams) -> str: select_parts: list[str] = [] if params.group_by: select_parts.extend(params.group_by) agg = (params.aggregate or "avg").lower() def agg_expr(col: str) -> str: if agg.startswith("p"): quant = float(agg[1:]) / 100 return f"quantile({col}, {quant})" if agg == "count distinct": return f"count(DISTINCT {col})" return f"{agg}({col})" for col in params.columns: if col in params.group_by: continue select_parts.append(f"{agg_expr(col)} AS {col}") if params.show_hits: select_parts.insert(len(params.group_by), "count(*) AS Hits") else: select_parts.extend(params.columns) for name, expr in params.derived_columns.items(): select_parts.append(f"{expr} AS {name}") select_clause = ", ".join(select_parts) if select_parts else "*" query = f"SELECT {select_clause} FROM events" where_parts: list[str] = [] if params.start: where_parts.append(f"timestamp >= '{params.start}'") if params.end: where_parts.append(f"timestamp <= '{params.end}'") for f in params.filters: op = f.op if op in {"empty", "!empty"}: val = "''" else: if f.value is None: continue if isinstance(f.value, list): if not f.value: continue if op == "=": vals = " OR ".join(f"{f.column} = '{v}'" for v in f.value) where_parts.append(f"({vals})") continue val = f"'{f.value}'" if isinstance(f.value, str) else str(f.value) if op == "contains": where_parts.append(f"{f.column} ILIKE '%' || {val} || '%'") elif op == "!contains": where_parts.append(f"{f.column} NOT ILIKE '%' || {val} || '%'") elif op == "empty": where_parts.append(f"{f.column} = {val}") elif op == "!empty": where_parts.append(f"{f.column} != {val}") else: where_parts.append(f"{f.column} {op} {val}") if where_parts: query += " WHERE " + " AND ".join(where_parts) if params.group_by: query += " GROUP BY " + ", ".join(params.group_by) if params.order_by: query += f" ORDER BY {params.order_by} {params.order_dir}" if params.limit is not None: query += f" LIMIT {params.limit}" return query def create_app(db_file: str | Path | None = None) -> Flask: app = Flask(__name__, static_folder="static") db_path = Path(db_file or Path(__file__).with_name("sample.csv")).resolve() con = _load_database(db_path) column_types: Dict[str, str] = { r[1]: r[2] for r in con.execute("PRAGMA table_info(events)").fetchall() } sample_cache: Dict[Tuple[str, str], Tuple[List[str], float]] = {} CACHE_TTL = 60.0 CACHE_LIMIT = 200 @app.route("/") def index() -> Any: # pyright: ignore[reportUnusedFunction] assert app.static_folder is not None return send_from_directory(app.static_folder, "index.html") @app.route("/api/columns") def columns() -> Any: # pyright: ignore[reportUnusedFunction] rows = con.execute("PRAGMA table_info(events)").fetchall() return jsonify([{"name": r[1], "type": r[2]} for r in rows]) def _cache_get(key: Tuple[str, str]) -> List[str] | None: item = sample_cache.get(key) if item is None: return None vals, ts = item if time.time() - ts > CACHE_TTL: del sample_cache[key] return None sample_cache[key] = (vals, time.time()) return vals

I need to keep scrolling until I reach the relevant section for this task.

shell
root@947ba2ae34e4:/workspace/scubaduck# sed -n '200,400p' scubaduck/server.py return vals def _cache_set(key: Tuple[str, str], vals: List[str]) -> None: sample_cache[key] = (vals, time.time()) if len(sample_cache) > CACHE_LIMIT: oldest = min(sample_cache.items(), key=lambda kv: kv[1][1])[0] del sample_cache[oldest] @app.route("/api/samples") def sample_values() -> Any: # pyright: ignore[reportUnusedFunction] column = request.args.get("column") substr = request.args.get("q", "") if not column or column not in column_types: return jsonify([]) ctype = column_types[column].upper() if "CHAR" not in ctype and "STRING" not in ctype and "VARCHAR" not in ct ype: return jsonify([]) key = (column, substr) cached = _cache_get(key) if cached is not None: return jsonify(cached) rows = con.execute( f"SELECT DISTINCT {column} FROM events WHERE CAST({column} AS VARCHA R) ILIKE '%' || ? || '%' LIMIT 20", [substr], ).fetchall() values = [r[0] for r in rows] _cache_set(key, values) return jsonify(values) @app.route("/api/query", methods=["POST"]) def query() -> Any: # pyright: ignore[reportUnusedFunction] payload = request.get_json(force=True) try: start = parse_time(payload.get("start")) end = parse_time(payload.get("end")) except Exception as exc: return jsonify({"error": str(exc)}), 400 params = QueryParams( start=start, end=end, order_by=payload.get("order_by"), order_dir=payload.get("order_dir", "ASC"), limit=payload.get("limit"), columns=payload.get("columns", []), derived_columns=payload.get("derived_columns", {}), graph_type=payload.get("graph_type", "samples"), group_by=payload.get("group_by", []), aggregate=payload.get("aggregate"), show_hits=payload.get("show_hits", False), ) for f in payload.get("filters", []): params.filters.append(Filter(f["column"], f["op"], f.get("value"))) if params.graph_type != "table" and ( params.group_by or params.aggregate or params.show_hits ): return ( jsonify( { "error": "group_by, aggregate and show_hits are only val id for table view" } ), 400, ) valid_cols = set(column_types.keys()) for col in params.columns: if col not in valid_cols: return jsonify({"error": f"Unknown column: {col}"}), 400 for col in params.group_by: if col not in valid_cols: return jsonify({"error": f"Unknown column: {col}"}), 400 if params.order_by and params.order_by not in valid_cols: return jsonify({"error": f"Unknown column: {params.order_by}"}), 400 if params.group_by: agg = (params.aggregate or "avg").lower() if agg.startswith("p") or agg in {"avg", "sum"}: need_numeric = True allow_time = False elif agg in {"min", "max"}: need_numeric = False allow_time = True else: need_numeric = False allow_time = False if need_numeric or allow_time: for c in params.columns: if c in params.group_by: continue ctype = column_types.get(c, "").upper() is_numeric = any( t in ctype for t in [ "INT", "DECIMAL", "REAL", "DOUBLE", "FLOAT", "NUMERIC", "HUGEINT", ] ) is_time = "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype if need_numeric and not is_numeric: return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) if allow_time and not (is_numeric or is_time): return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) sql = build_query(params) try: rows = con.execute(sql).fetchall() except Exception as exc: tb = traceback.format_exc() print(f"Query failed:\n{sql}\n{tb}") return ( jsonify({"sql": sql, "error": str(exc), "traceback": tb}), 400, ) return jsonify({"sql": sql, "rows": rows}) return app app = create_app() if __name__ == "__main__": app.run(debug=True)

I see some logic issues in group_by and aggregate, especially with AVG on timestamptz.

shell
root@947ba2ae34e4:/workspace/scubaduck# head -n 10 scubaduck/sample.csv timestamp,event,value,user 2024-01-01 00:00:00,login,10,alice 2024-01-01 01:00:00,logout,20,bob 2024-01-02 00:00:00,login,30,alice 2024-01-02 03:00:00,login,40,charlie

I'll go ahead and take a look at the front-end static files now.

shell
root@947ba2ae34e4:/workspace/scubaduck# ls scubaduck/static index.html

I'll take a look at index.html to check out its contents.

shell
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ScubaDuck</title> <style> body { margin: 0; font-family: sans-serif; height: 100vh; display: flex; fle x-direction: column; } #header { padding: 10px; font-weight: bold; border-bottom: 1px solid #ccc; } #content { flex: 1; display: flex; height: calc(100vh - 42px); overflow: hid den; } #sidebar { width: 450px; padding: 10px; border-right: 3px solid #ccc; overfl ow-y: auto; display: flex; flex-direction: column; box-sizing: border-box; } #sidebar-resizer { width: 5px; cursor: col-resize; background: #ccc; } #view { flex: 1; padding: 10px; overflow-y: auto; overflow-x: auto; } .field { display: flex; align-items: center; margin-bottom: 10px; } .field label { width: 80px; text-align: right; margin-right: 5px; } .help { margin-left: 4px; cursor: help; } .rel-btn { margin-left: 4px; } #tabs { display: flex; align-items: center; margin-bottom: 10px; } #tabs .tab { margin-right: 5px; background: none; border: 1px solid #ccc; pa dding: 4px 8px; cursor: pointer; width: 120px; text-align: center; box-sizing: b order-box; } #tabs .tab.active { background: #eee; font-weight: bold; } #dive { margin-left: auto; background: green; color: white; border: none; pa dding: 5px 10px; cursor: pointer; } .tab-content { display: none; } .tab-content.active { display: block; } #filter_list { display: flex; flex-direction: column; } #filters .filter { border: 1px solid #ccc; padding: 5px; margin-bottom: 5px; position: relative; display: flex; flex-direction: column; } #filters .filter-row { display: flex; margin-bottom: 5px; } #filters .filter-row .f-col { flex: 1; } #filters .filter-row .f-op { margin-left: 5px; width: fit-content; flex: 0 0 auto; } .chip-input input { border: none; flex: 1; min-width: 60px; margin: 2px; outline: none; } .chip-box { position: relative; } .chip-input { display: flex; flex-wrap: wrap; border: 1px solid #ccc; paddin g: 2px; min-height: 24px; } .chip { background: #eee; border: 1px solid #999; padding: 2px 4px; margin: 2px; border-radius: 3px; display: flex; align-items: center; } .chip .x { margin-left: 4px; cursor: pointer; } .chip-copy { margin-left: 4px; cursor: pointer; background: none; border: no ne; } .chip-dropdown { position: absolute; left: 0; right: 0; top: 100%; backgroun d: white; border: 1px solid #ccc; max-height: 120px; overflow-y: auto; z-index: 10; display: none; } .chip-dropdown div { padding: 2px 4px; cursor: pointer; } .chip-dropdown div.highlight { background: #bde4ff; } .rel-box { position: relative; display: flex; } .rel-dropdown { position: absolute; left: 0; right: 0; top: 100%; background : white; border: 1px solid #ccc; z-index: 10; display: none; } .rel-dropdown div { padding: 2px 4px; cursor: pointer; } .rel-dropdown div:hover { background: #bde4ff; } .dropdown { position: relative; display: inline-block; } .dropdown-display { border: 1px solid #ccc; padding: 2px 18px 2px 4px; curso r: pointer; min-width: 80px; } .dropdown-menu { position: absolute; left: 0; right: 0; top: 100%; backgroun d: white; border: 1px solid #ccc; z-index: 10; max-height: 160px; overflow-y: au to; display: none; } .dropdown-menu input { width: 100%; box-sizing: border-box; padding: 2px 4px ; border: none; border-bottom: 1px solid #ccc; } .dropdown-menu div { padding: 2px 4px; cursor: pointer; } .dropdown-menu div.selected { background: #bde4ff; } .dropdown-menu div:hover { background: #eee; } #filters .filter button.remove { margin-left: 5px; width: 20px; flex: 0 0 auto; } #filters h4 { margin: 0 0 5px 0; } table { border-collapse: collapse; min-width: 100%; } th, td { border: 1px solid #ccc; padding: 4px; box-sizing: border-box; } th { text-align: left; cursor: pointer; position: relative; } th.sorted { color: blue; } tr:nth-child(even) td { background: #f9f9f9; } tr.selected td { background: #bde4ff !important; } tr:hover:not(.selected) td { background: #eee; } #column_actions { text-align: right; margin-bottom: 5px; } #column_actions a { margin-left: 5px; } .col-group-header { overflow: hidden; } .col-group-header .links { float: right; } .col-group-header .links a { margin-left: 5px; } /* Column resizer removed */ </style> </head> <body> <div id="header">sample.csv - events <select id="graph_type"><option value="sa mples">Samples</option><option value="table">Table</option></select></div> <div id="content"> <div id="sidebar"> <div id="tabs"> <button class="tab active" data-tab="settings">View Settings</button> <button class="tab" data-tab="columns">Columns</button> <button id="dive" onclick="dive()">Dive</button> </div> <div id="settings" class="tab-content active"> <div class="field"> <label>Start<span class="help" title="Sets the start/end of the time r ange to query. Can be any kind of datetime string. For example: 'April 23, 2014' or 'yesterday'.">[?]</span></label> <div class="rel-box"> <input id="start" type="text" /> <button type="button" class="rel-btn" data-target="start-select">&#9 660;</button> <div id="start-select" class="rel-dropdown" data-input="start"> <div data-value="-1 hour">-1 hour</div> <div data-value="-3 hours">-3 hours</div> <div data-value="-12 hours">-12 hours</div> <div data-value="-1 day">-1 day</div> <div data-value="-3 days">-3 days</div> <div data-value="-1 week">-1 week</div> <div data-value="-1 fortnight">-1 fortnight</div> <div data-value="-30 days">-30 days</div> <div data-value="-90 days">-90 days</div> </div> </div> </div> <div class="field"> <label>End<span class="help" title="Sets the start/end of the time ran ge to query. Can be any kind of datetime string. For example: 'April 23, 2014' o r 'yesterday'.">[?]</span></label> <div class="rel-box"> <input id="end" type="text" /> <button type="button" class="rel-btn" data-target="end-select">&#966 0;</button> <div id="end-select" class="rel-dropdown" data-input="end"> <div data-value="now">now</div> <div data-value="-1 hour">-1 hour</div> <div data-value="-3 hours">-3 hours</div> <div data-value="-12 hours">-12 hours</div> <div data-value="-1 day">-1 day</div> <div data-value="-3 days">-3 days</div> <div data-value="-1 week">-1 week</div> <div data-value="-1 fortnight">-1 fortnight</div> <div data-value="-30 days">-30 days</div> <div data-value="-90 days">-90 days</div> </div> </div> </div> <div class="field"> <label>Order By<span class="help" title="Choose a column to sort resul ts by.">[?]</span></label> <select id="order_by"></select> <button id="order_dir" type="button">ASC \u25B2</button> </div> <div class="field"> <label>Limit<span class="help" title="Choose the maximum number of res ults to show in the chart after any aggregations have been applied. For example, a limit of 10 will show no more than 10 rows for a table, etc.">[?]</span></lab el> <input id="limit" type="number" value="100" /> </div> <div id="group_by_field" class="field" style="display:none;"> <label>Group By</label> <div class="chip-box"> <div class="chip-input"> <input id="group_by" class="f-val" type="text"> <button type="button" class="chip-copy">&#x2398;</button> </div> <div class="chip-dropdown"></div> </div> </div> <div id="aggregate_field" class="field" style="display:none;"> <label>Aggregate</label> <select id="aggregate"> <option>Avg</option> <option>Count</option> <option>Sum</option> <option>Min</option> <option>Max</option> <option>Count Distinct</option> <option>p5</option> <option>p25</option> <option>p50</option> <option>p70</option> <option>p75</option> <option>p90</option> <option>p95</option> <option>p99</option> <option>p99.9</option> <option>p99.99</option> </select> </div> <div id="show_hits_field" class="field" style="display:none;"> <label>Show Hits</label> <input id="show_hits" type="checkbox" checked> </div> <div id="filters"> <h4>Filters<span class="help" title="You can create as many filters as you want. You can either write a filter using a UI or manual SQL. In the UI, fi lter consists of a column name, a relation (e.g., =, !=, <, >) and then a text f ield. The text field is a token input. It accepts multiple tokens for = relation , in which case we match using an OR for all options.">[?]</span></h4> <div id="filter_list"></div> <button id="add_filter" type="button" onclick="addFilter()">Add Filter </button> </div> <div id="query_info" style="margin-top:10px;"></div> </div> <div id="columns" class="tab-content"> <div id="column_actions"> <a id="columns_all" href="#">All</a> <a id="columns_none" href="#">None</a> </div> <div id="column_groups"></div>

I'm continuing down the page to explore more scripts.

shell
root@947ba2ae34e4:/workspace/scubaduck# sed -n '200,400p' scubaduck/static/index .html <div id="column_groups"></div> </div> </div> <div id="sidebar-resizer"></div> <div id="view"> <table id="results"></table> </div> </div> <script> const allColumns = []; const columnTypes = {}; const stringColumns = []; const integerColumns = []; const timeColumns = []; let selectedColumns = []; let displayType = 'samples'; let groupBy = {chips: [], addChip: () => {}, renderChips: () => {}}; function initDropdown(select) { const wrapper = document.createElement('div'); wrapper.className = 'dropdown'; select.parentNode.insertBefore(wrapper, select); wrapper.appendChild(select); select.style.display = 'none'; const disp = document.createElement('div'); disp.className = 'dropdown-display'; function updateDisplay() { const opt = select.options[select.selectedIndex]; disp.textContent = opt ? opt.textContent : ''; } updateDisplay(); wrapper.appendChild(disp); const menu = document.createElement('div'); menu.className = 'dropdown-menu'; const search = document.createElement('input'); menu.appendChild(search); const list = document.createElement('div'); menu.appendChild(list); wrapper.appendChild(menu); function close() { menu.style.display = 'none'; } function open() { renderOptions(); menu.style.display = 'block'; search.focus(); } disp.addEventListener('click', () => { if (menu.style.display === 'block') { close(); } else { open(); } }); document.addEventListener('click', e => { if (!wrapper.contains(e.target)) { close(); } }); function renderOptions() { const q = search.value.toLowerCase(); list.innerHTML = ''; Array.from(select.options).forEach(o => { if (!o.textContent.toLowerCase().includes(q)) return; const div = document.createElement('div'); div.textContent = o.textContent; if (o.value === select.value) div.className = 'selected'; div.addEventListener('mousedown', evt => { evt.preventDefault(); select.value = o.value; select.dispatchEvent(new Event('change')); updateDisplay(); close(); }); list.appendChild(div); }); } search.addEventListener('input', renderOptions); select.addEventListener('change', updateDisplay); } // Sidebar resizing const sidebar = document.getElementById('sidebar'); const sidebarResizer = document.getElementById('sidebar-resizer'); let sidebarWidth = parseInt(localStorage.getItem('sidebarWidth') || 450, 10); sidebar.style.width = sidebarWidth + 'px'; let sidebarResize = false; function startSidebarDrag(e) { e.preventDefault(); sidebarResize = true; document.addEventListener('mousemove', onSidebarDrag); document.addEventListener('mouseup', stopSidebarDrag); } function onSidebarDrag(e) { if (!sidebarResize) return; sidebarWidth = Math.max(200, e.clientX - sidebar.getBoundingClientRect().left) ; sidebar.style.width = sidebarWidth + 'px'; } function stopSidebarDrag() { document.removeEventListener('mousemove', onSidebarDrag); document.removeEventListener('mouseup', stopSidebarDrag); sidebarResize = false; localStorage.setItem('sidebarWidth', sidebarWidth); } sidebarResizer.addEventListener('mousedown', startSidebarDrag); let orderDir = 'ASC'; const orderDirBtn = document.getElementById('order_dir'); const graphTypeSel = document.getElementById('graph_type'); function updateOrderDirButton() { orderDirBtn.textContent = orderDir + (orderDir === 'ASC' ? ' \u25B2' : ' \u25B C'); } function updateDisplayTypeUI() { const show = graphTypeSel.value === 'table'; document.getElementById('group_by_field').style.display = show ? 'flex' : 'non e'; document.getElementById('aggregate_field').style.display = show ? 'flex' : 'no ne'; document.getElementById('show_hits_field').style.display = show ? 'flex' : 'no ne'; document.querySelectorAll('#column_groups .col-group').forEach(g => { if (g.querySelector('.col-group-header').textContent.startsWith('Strings')) { g.style.display = show ? 'none' : ''; } }); displayType = graphTypeSel.value; } orderDirBtn.addEventListener('click', () => { orderDir = orderDir === 'ASC' ? 'DESC' : 'ASC'; updateOrderDirButton(); }); updateOrderDirButton(); graphTypeSel.addEventListener('change', updateDisplayTypeUI); fetch('/api/columns').then(r => r.json()).then(cols => { const orderSelect = document.getElementById('order_by'); const groupsEl = document.getElementById('column_groups'); const groups = { time: {name: 'Time', cols: [], ul: null}, integer: {name: 'Integers', cols: [], ul: null}, string: {name: 'Strings', cols: [], ul: null} }; cols.forEach(c => { const t = c.type.toUpperCase(); columnTypes[c.name] = c.type; allColumns.push(c.name); let g = 'string'; if (t.includes('INT')) g = 'integer'; if (t.includes('TIMESTAMP')) g = 'time'; groups[g].cols.push(c.name); if (g !== 'string') { const o = document.createElement('option'); o.value = c.name; o.textContent = c.name; orderSelect.appendChild(o); } }); Object.keys(groups).forEach(key => { const g = groups[key]; const div = document.createElement('div'); div.className = 'col-group'; const header = document.createElement('div'); header.className = 'col-group-header'; header.appendChild(document.createTextNode(g.name + ': ')); const links = document.createElement('span'); links.className = 'links'; const allBtn = document.createElement('a'); allBtn.href = '#'; allBtn.textContent = 'All'; const noneBtn = document.createElement('a'); noneBtn.href = '#'; noneBtn.textContent = 'None'; links.appendChild(allBtn); links.appendChild(noneBtn); header.appendChild(links); div.appendChild(header); const ul = document.createElement('ul'); g.ul = ul; g.cols.forEach(name => { const li = document.createElement('li'); const label = document.createElement('label'); const cb = document.createElement('input'); cb.type = 'checkbox'; cb.value = name; cb.checked = true; cb.addEventListener('change', updateSelectedColumns); label.appendChild(cb); label.appendChild(document.createTextNode(' ' + name)); li.appendChild(label); ul.appendChild(li); }); allBtn.addEventListener('click', e => { e.preventDefault(); ul.querySelectorAll('input').forEach(cb => (cb.checked = true)); updateSelectedColumns(); }); noneBtn.addEventListener('click', e => { e.preventDefault(); ul.querySelectorAll('input').forEach(cb => (cb.checked = false)); updateSelectedColumns();
root@947ba2ae34e4:/workspace/scubaduck# sed -n '400,800p' scubaduck/static/index .html updateSelectedColumns(); }); div.appendChild(ul); groupsEl.appendChild(div); }); document.getElementById('columns_all').addEventListener('click', e => { e.preventDefault(); groupsEl.querySelectorAll('input').forEach(cb => (cb.checked = true)); updateSelectedColumns(); }); document.getElementById('columns_none').addEventListener('click', e => { e.preventDefault(); groupsEl.querySelectorAll('input').forEach(cb => (cb.checked = false)); updateSelectedColumns(); }); updateSelectedColumns(); groupBy = document.getElementById('group_by').closest('.field'); initChipInput(groupBy, typed => allColumns.filter(c => c.toLowerCase().includes(typed.toLowerCase())) ); initDropdown(orderSelect); initDropdown(document.getElementById('aggregate')); initDropdown(graphTypeSel); updateDisplayTypeUI(); addFilter(); initFromUrl(); }); document.querySelectorAll('#tabs .tab').forEach(btn => { btn.addEventListener('click', () => { document.querySelectorAll('#tabs .tab').forEach(t => t.classList.remove('act ive')); document.querySelectorAll('.tab-content').forEach(c => c.classList.remove('a ctive')); btn.classList.add('active'); document.getElementById(btn.dataset.tab).classList.add('active'); }); }); document.querySelectorAll('.rel-btn').forEach(btn => { btn.addEventListener('click', () => { const dd = document.getElementById(btn.dataset.target); const show = dd.style.display === 'none' || dd.style.display === ''; document.querySelectorAll('.rel-dropdown').forEach(d => (d.style.display = ' none')); dd.style.display = show ? 'block' : 'none'; }); }); document.querySelectorAll('.rel-dropdown div').forEach(opt => { opt.addEventListener('click', () => { const box = opt.closest('.rel-box'); const input = box.querySelector('input'); input.value = opt.dataset.value || opt.textContent; opt.parentElement.style.display = 'none'; }); }); document.addEventListener('click', e => { document.querySelectorAll('.rel-dropdown').forEach(dd => { if (!dd.parentElement.contains(e.target)) dd.style.display = 'none'; }); }); function updateSelectedColumns() { const base = allColumns.filter(name => { const cb = document.querySelector(`#column_groups input[value="${name}"]`); if (!cb || !cb.checked) return false; if (graphTypeSel.value === 'table' && isStringColumn(name)) return false; return true; }); if (graphTypeSel.value === 'table') { selectedColumns = groupBy.chips.slice(); if (document.getElementById('show_hits').checked) selectedColumns.push('Hits '); base.forEach(c => { if (!selectedColumns.includes(c)) selectedColumns.push(c); }); } else { selectedColumns = base; } } function isStringColumn(name) { const t = (columnTypes[name] || '').toUpperCase(); return t.includes('CHAR') || t.includes('STRING') || t.includes('VARCHAR'); } function isIntegerColumn(name) { const t = (columnTypes[name] || '').toUpperCase(); return t.includes('INT'); } function isTimeColumn(name) { const t = (columnTypes[name] || '').toUpperCase(); return t.includes('TIMESTAMP'); } function initChipInput(filter, fetchOptions) { const input = filter.querySelector('.f-val'); const chipsEl = filter.querySelector('.chip-input'); const dropdown = filter.querySelector('.chip-dropdown'); const copyBtn = filter.querySelector('.chip-copy'); const chips = []; filter.chips = chips; filter.renderChips = renderChips; filter.addChip = addChip; let highlight = 0; chipsEl.addEventListener('click', () => { input.focus(); }); function renderChips() { chipsEl.querySelectorAll('.chip').forEach(c => c.remove()); chips.forEach((v, i) => { const span = document.createElement('span'); span.className = 'chip'; span.textContent = v; const x = document.createElement('span'); x.className = 'x'; x.textContent = '✖'; x.addEventListener('click', () => { chips.splice(i, 1); ... ['>', '>'], ]; opSel.innerHTML = ops.map(o => `<option value="${o[0]}">${o[1]}</option>`).j oin(''); updateInputVis(); } function updateInputVis() { const op = container.querySelector('.f-op').value; const box = container.querySelector('.chip-box'); box.style.display = op === 'empty' || op === '!empty' ? 'none' : 'block'; } colSel.addEventListener('change', populateOps); container.querySelector('.f-op').addEventListener('change', updateInputVis); initDropdown(container.querySelector('.f-op')); populateOps(); document.getElementById('filter_list').appendChild(container); initChipInput(container, (typed, el) => { const colSel = el.querySelector('.f-col'); if (!colSel) return []; const col = colSel.value; if (!isStringColumn(col)) return []; return fetch(`/api/samples?column=${encodeURIComponent(col)}&q=${encodeURICo mponent(typed)}`) .then(r => r.json()); }); } let lastQueryTime = 0; let queryStart = 0; function dive(push=true) { const payload = collectParams(); if (push) { history.pushState(payload, '', paramsToSearch(payload)); } const view = document.getElementById('view'); view.innerHTML = '<p>Loading...</p>'; window.lastResults = undefined; queryStart = performance.now(); fetch('/api/query', {method:'POST', headers:{'Content-Type':'application/json' }, body:JSON.stringify(payload)}) .then(async r => { const data = await r.json(); if (!r.ok) throw data; return data; }) .then(data => { lastQueryTime = Math.round(performance.now() - queryStart); showResults(data); }) .catch(err => { showError(err); }); } function collectParams() { updateSelectedColumns(); const payload = { start: document.getElementById('start').value, end: document.getElementById('end').value, order_by: document.getElementById('order_by').value, order_dir: orderDir, limit: parseInt(document.getElementById('limit').value, 10), columns: selectedColumns.filter(c => c !== 'Hits'), graph_type: graphTypeSel.value, filters: Array.from(document.querySelectorAll('#filters .filter')).map(f => { const chips = f.chips || []; const op = f.querySelector('.f-op').value; let value = null; if (op !== 'empty' && op !== '!empty') { value = chips.length === 0 ? null : (chips.length === 1 ? chips[0] : chi ps); } return {column: f.querySelector('.f-col').value, op, value}; }) }; if (graphTypeSel.value === 'table') { payload.group_by = groupBy.chips || []; payload.aggregate = document.getElementById('aggregate').value; payload.show_hits = document.getElementById('show_hits').checked; } return payload; } function paramsToSearch(params) { const sp = new URLSearchParams(); if (params.start) sp.set('start', params.start); if (params.end) sp.set('end', params.end); if (params.order_by) sp.set('order_by', params.order_by); if (params.order_dir) sp.set('order_dir', params.order_dir); if (params.limit !== null && params.limit !== undefined) sp.set('limit', param s.limit); if (params.columns && params.columns.length) sp.set('columns', params.columns. join(',')); if (params.filters && params.filters.length) sp.set('filters', JSON.stringify( params.filters)); if (params.graph_type) sp.set('graph_type', params.graph_type); if (params.graph_type === 'table') { if (params.group_by && params.group_by.length) sp.set('group_by', params.gro up_by.join(',')); if (params.aggregate) sp.set('aggregate', params.aggregate); if (params.show_hits) sp.set('show_hits', '1'); } const qs = sp.toString(); return qs ? '?' + qs : ''; } function applyParams(params) { document.getElementById('start').value = params.start || ''; document.getElementById('end').value = params.end || ''; if (params.order_by) { document.getElementById('order_by').value = params.order_by; } orderDir = params.order_dir || 'ASC'; updateOrderDirButton(); if (params.limit !== undefined && params.limit !== null) { document.getElementById('limit').value = params.limit; } graphTypeSel.value = params.graph_type || 'samples'; updateDisplayTypeUI(); if (params.group_by) {

I need to continue to the part that shows the results as a table.

shell
root@947ba2ae34e4:/workspace/scubaduck# sed -n '800,1200p' scubaduck/static/inde x.html if (params.group_by) { groupBy.chips.splice(0, groupBy.chips.length, ...params.group_by); groupBy.renderChips(); } if (params.aggregate) document.getElementById('aggregate').value = params.aggr egate; document.getElementById('show_hits').checked = params.show_hits ?? true; document.querySelectorAll('#column_groups input').forEach(cb => { cb.checked = !params.columns || params.columns.includes(cb.value); }); updateSelectedColumns(); const list = document.getElementById('filter_list'); list.innerHTML = ''; if (params.filters && params.filters.length) { params.filters.forEach(f => { addFilter(); const el = list.lastElementChild; el.querySelector('.f-col').value = f.column; el.querySelector('.f-col').dispatchEvent(new Event('change')); el.querySelector('.f-op').value = f.op; el.querySelector('.f-op').dispatchEvent(new Event('change')); if (f.value !== null && f.op !== 'empty' && f.op !== '!empty') { const values = Array.isArray(f.value) ? f.value : [f.value]; values.forEach(v => el.addChip(v)); el.renderChips(); } }); } else { addFilter(); } } function parseSearch() { const sp = new URLSearchParams(window.location.search); const params = {}; if (sp.has('start')) params.start = sp.get('start'); if (sp.has('end')) params.end = sp.get('end'); if (sp.has('order_by')) params.order_by = sp.get('order_by'); if (sp.has('order_dir')) params.order_dir = sp.get('order_dir'); if (sp.has('limit')) params.limit = parseInt(sp.get('limit'), 10); if (sp.has('columns')) params.columns = sp.get('columns').split(',').filter(c => c); if (sp.has('filters')) { try { params.filters = JSON.parse(sp.get('filters')); } catch(e) { params.fi lters = []; } } if (sp.has('graph_type')) params.graph_type = sp.get('graph_type'); if (sp.has('group_by')) params.group_by = sp.get('group_by').split(',').filter (c => c); if (sp.has('aggregate')) params.aggregate = sp.get('aggregate'); if (sp.has('show_hits')) params.show_hits = sp.get('show_hits') === '1'; return params; } function initFromUrl() { const params = parseSearch(); history.replaceState(params, '', paramsToSearch(params)); applyParams(params); dive(false); } window.addEventListener('popstate', e => { const params = e.state || parseSearch(); applyParams(params); dive(false); }); let originalRows = []; let sortState = {index: null, dir: null}; function renderTable(rows) { const table = document.getElementById('results'); table.innerHTML = ''; if (rows.length === 0) return; let hitsIndex = selectedColumns.indexOf('Hits'); let totalHits = 0; if (hitsIndex !== -1) { totalHits = rows.reduce((s, r) => s + Number(r[hitsIndex]), 0); } const header = document.createElement('tr'); selectedColumns.forEach((col, i) => { const th = document.createElement('th'); th.textContent = col; th.dataset.index = i; th.addEventListener('click', handleSort); if (sortState.index === i) { th.classList.add('sorted'); th.textContent = col + (sortState.dir === 'desc' ? ' \u25BC' : ' \u25B2'); } if (!isStringColumn(col)) th.style.textAlign = 'right'; header.appendChild(th); }); table.appendChild(header); rows.forEach(row => { const tr = document.createElement('tr'); tr.addEventListener('click', () => { tr.classList.toggle('selected'); }); row.forEach((v, i) => { const col = selectedColumns[i]; const td = document.createElement('td'); if (isTimeColumn(col)) { const d = new Date(v); td.textContent = d.toLocaleString('en-US', { weekday: 'short', month: 'short', day: 'numeric', year: 'numeric', hour: 'numeric', minute: 'numeric', second: 'numeric', hour12: true, timeZoneName: 'short' }); } else { if (col === 'Hits') { const pct = totalHits ? ((v / totalHits) * 100).toFixed(1) : '0'; td.textContent = `${v} (${pct}%)`; } else { td.textContent = v; } } td.style.textAlign = isStringColumn(col) ? 'left' : 'right'; tr.appendChild(td); }); table.appendChild(tr); }); // ensure table does not overflow unless necessary const view = document.getElementById('view'); if (table.scrollWidth <= view.clientWidth) { table.style.width = '100%'; } } function handleSort(e) { const idx = parseInt(e.target.dataset.index, 10); if (sortState.index !== idx) { sortState.index = idx; sortState.dir = 'asc'; } else if (sortState.dir === 'asc') { sortState.dir = 'desc'; } else if (sortState.dir === 'desc') { sortState.index = null; sortState.dir = null; } else { sortState.dir = 'asc'; } let rows = originalRows.slice(); if (sortState.index !== null) { rows.sort((a, b) => { const va = a[sortState.index]; const vb = b[sortState.index]; if (va === vb) return 0; if (sortState.dir === 'desc') return va < vb ? 1 : -1; return va > vb ? 1 : -1; }); } renderTable(rows); } function showResults(data) { window.lastResults = data; const view = document.getElementById('view'); if (data.rows.length === 0) { view.innerHTML = '<p id="empty-message">Empty data provided to table</p><table id="results" ></table>'; } else { view.innerHTML = '<table id="results"></table>'; } originalRows = data.rows.slice(); sortState = {index: null, dir: null}; renderTable(originalRows); document.getElementById('query_info').textContent = `Your query took about ${lastQueryTime} ms`; } function showError(err) { window.lastResults = err; const view = document.getElementById('view'); let msg = ''; if (typeof err === 'string') { msg = err; } else if (err) { msg = err.error || 'Error'; if (err.sql) { msg += '\nSQL: ' + err.sql; } if (err.traceback) { msg += '\n' + err.traceback; } } view.innerHTML = `<pre id="error-message">${msg}</pre>`; document.getElementById('query_info').textContent = ''; } function setSelectValue(selector, value) { const el = typeof selector === 'string' ? document.querySelector(selector) : s elector; if (el) { el.value = value; el.dispatchEvent(new Event('change')); } } </script> </body> </html>

I’ll create a test that mimics user interaction and verifies the table functionality issue.

shell
from scubaduck import server import pytest def test_basic_query() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-02 00:00:00", "order_by": "timestamp", "order_dir": "ASC", "limit": 10, "columns": ["timestamp", "event", "value", "user"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert data rows = data["rows"] # We expect first three rows (until 2024-01-02 00:00:00) assert len(rows) == 3 assert rows[0][1] == "login" assert rows[1][1] == "logout" def test_filter_multi_token() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-02 03:00:00", "order_by": "timestamp", "limit": 10, "columns": ["timestamp", "event", "value", "user"], "filters": [{"column": "user", "op": "=", "value": ["alice", "charlie"]} ], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert data rows = data["rows"] # Should only return rows for alice and charlie assert len(rows) == 3 assert rows[0][3] == "alice" assert rows[-1][3] == "charlie" def test_empty_filter_is_noop() -> None: app = server.app client = app.test_client() base_payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "order_by": "timestamp", "limit": 100, "columns": ["timestamp", "event", "value", "user"], } no_filter = {**base_payload, "filters": []} empty_filter = { **base_payload, "filters": [{"column": "user", "op": "=", "value": None}], } rv1 = client.post( "/api/query", data=json.dumps(no_filter), content_type="application/json " ) rv2 = client.post( "/api/query", data=json.dumps(empty_filter), content_type="application/j son" ) rows1 = rv1.get_json()["rows"] rows2 = rv2.get_json()["rows"] assert rows1 == rows2 def test_select_columns() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "order_by": "timestamp", "limit": 10, "columns": ["timestamp", "user"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert data rows = data["rows"] assert len(rows[0]) == 2 assert rows[0][1] == "alice" def test_string_filter_ops() -> None: app = server.app client = app.test_client() base = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "order_by": "timestamp", "limit": 100, "columns": ["timestamp", "event", "value", "user"], } contains = { **base, "filters": [{"column": "user", "op": "contains", "value": "ali"}], } rv = client.post( "/api/query", data=json.dumps(contains), content_type="application/json" ) rows = rv.get_json()["rows"] assert all("ali" in r[3] for r in rows) regex = { **base, "filters": [{"column": "user", "op": "~", "value": "^a.*"}], } rv = client.post( "/api/query", data=json.dumps(regex), content_type="application/json" ) rows = rv.get_json()["rows"] assert all(r[3].startswith("a") for r in rows) assert len(rows) == 2 not_empty = {**base, "filters": [{"column": "user", "op": "!empty"}]} rv = client.post( "/api/query", data=json.dumps(not_empty), content_type="application/json " ) assert len(rv.get_json()["rows"]) == 4 def _make_payload() -> dict[str, object]: return { "start": "2024-01-01 00:00:00", "end": "2024-01-02 00:00:00", "order_by": "timestamp", "order_dir": "ASC", "limit": 10, "columns": ["timestamp", "event", "value", "user"], "filters": [], } def test_database_types(tmp_path: Path) -> None: csv_file = tmp_path / "events.csv" csv_file.write_text(Path("scubaduck/sample.csv").read_text()) sqlite_file = tmp_path / "events.sqlite" import sqlite3 conn = sqlite3.connect(sqlite_file) conn.execute( "CREATE TABLE events (timestamp TEXT, event TEXT, value INTEGER, user TE XT)" ) with open(csv_file) as f: next(f) for line in f: ts, ev, val, user = line.strip().split(",") conn.execute( "INSERT INTO events VALUES (?, ?, ?, ?)", (ts, ev, int(val), use r) ) conn.commit() conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce ssIssue] duckdb_file = tmp_path / "events.duckdb" con = duckdb.connect(duckdb_file) con.execute( f"CREATE TABLE events AS SELECT * FROM read_csv_auto('{csv_file.as_posix ()}')" ) con.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcces sIssue] for db in (csv_file, sqlite_file, duckdb_file): app = server.create_app(db) client = app.test_client() payload = _make_payload() rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/js on" ) rows = rv.get_json()["rows"] assert len(rows) == 3 def test_group_by_table() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00",
"limit": 10, "columns": ["value"], "group_by": ["user"], "aggregate": "Sum", "show_hits": True, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) rows = rv.get_json()["rows"] assert rows[0][0] == "alice" assert rows[0][1] == 2 assert rows[0][2] == 40 def test_relative_time_query(monkeypatch: pytest.MonkeyPatch) -> None: app = server.app client = app.test_client() from datetime import datetime fixed_now = datetime(2024, 1, 2, 4, 0, 0) class FixedDateTime(datetime): @classmethod def now(cls, tz=None): # type: ignore[override] return fixed_now if tz is None else fixed_now.astimezone(tz) monkeypatch.setattr(server, "datetime", FixedDateTime) payload = { "start": "-1 hour", "end": "now", "order_by": "timestamp", "limit": 100, "columns": ["timestamp", "event", "value", "user"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 1 assert data["rows"][0][3] == "charlie" def test_invalid_time_error() -> None: app = server.app client = app.test_client() payload = { "start": "nonsense", "end": "now", "order_by": "timestamp", "limit": 10, "columns": ["timestamp"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "error" in data def test_query_error_returns_sql_and_traceback() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "columns": ["event"], "group_by": ["user"], "aggregate": "avg", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "error" in data def test_table_unknown_column_error() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "order_by": "timestamp", "limit": 100, "columns": ["user", "Hits", "value"], "group_by": ["user"], "aggregate": "Count", "show_hits": True, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "Unknown column" in data["error"] def test_samples_view_rejects_group_by() -> None: app = server.app client = app.test_client() payload = { "graph_type": "samples", "group_by": ["user"], "columns": ["timestamp"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "only valid" in data["error"]

I'll proceed with the file to make sure tests for parsing times are covered.

shell
root@947ba2ae34e4:/workspace/scubaduck# sed -n '400,800p' tests/test_server.py

I'll mimic the UI flow: load page, switch to "Table" view, and run query.

I'll mimic user behavior: load page, set "table" view, run query with default aggregate.

I'll verify column selections on page load, ensuring non-string columns for table view.

I'll adjust the server to return the correct hit count and handle "Avg" aggregation correctly.

I'll create a test to check the average timestamp and ensure correct query results.

shell
> from datetime import datetime > import statistics > rows = ['2024-01-01 00:00:00','2024-01-01 01:00:00','2024-01-02 00:00:00','202 4-01-02 03:00:00'] > secs=[datetime.strptime(x,'%Y-%m-%d %H:%M:%S').timestamp() for x in rows] > print(sum(secs)/len(secs)) > from datetime import datetime, timezone > avg= sum(secs)/len(secs) > print(datetime.fromtimestamp(avg)) > EOF 1704114000.0 2024-01-01 13:00:00

I’ll create a test to check expected row values and a fix for query aggregation.

I can't check column types here, but Duckdb handles avg for timestamp text types.

shell
root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb > con=duckdb.connect() > con.execute("CREATE TABLE events AS SELECT * FROM read_csv_auto('scubaduck/sam ple.csv')") > print(con.execute('PRAGMA table_info(events)').fetchall()) > EOF Traceback (most recent call last): File "<stdin>", line 1, in <module> ModuleNotFoundError: No module named 'duckdb'

I realized I forgot to activate the virtual environment—time to run "source .venv/bin/activate".

shell
root@947ba2ae34e4:/workspace/scubaduck# source .venv/bin/activate
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb > con=duckdb.connect() > con.execute("CREATE TABLE events AS SELECT * FROM read_csv_auto('scubaduck/sam ple.csv')") > print(con.execute('PRAGMA table_info(events)').fetchall()) > EOF [(0, 'timestamp', 'TIMESTAMP', False, None, False), (1, 'event', 'VARCHAR', Fals e, None, False), (2, 'value', 'BIGINT', False, None, False), (3, 'user', 'VARCHA R', False, None, False)] (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'll test running select avg(timestamp) on the events table to see if it's allowed.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb > con=duckdb.connect() > con.execute("CREATE TABLE events AS SELECT * FROM read_csv_auto('scubaduck/sam ple.csv')") > print(con.execute('select avg(timestamp) from events').fetchall()) > EOF Traceback (most recent call last): File "<stdin>", line 4, in <module> duckdb.duckdb.BinderException: Binder Error: No function matches the given name and argument types 'avg(TIMESTAMP)'. You might need to add explicit type casts. Candidate functions: avg(DECIMAL) -> DECIMAL avg(SMALLINT) -> DOUBLE avg(INTEGER) -> DOUBLE avg(BIGINT) -> DOUBLE avg(HUGEINT) -> DOUBLE avg(DOUBLE) -> DOUBLE LINE 1: select avg(timestamp) from events ^ (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'll try casting the timestamp to epoch using the epoch function in Duckdb.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb > con=duckdb.connect() > con.execute("CREATE TABLE events AS SELECT * FROM read_csv_auto('scubaduck/sam ple.csv')") > print(con.execute('select avg(UNIX_TIMESTAMP(timestamp)) from events').fetchal l()) > EOF Traceback (most recent call last): File "<stdin>", line 4, in <module> duckdb.duckdb.CatalogException: Catalog Error: Scalar Function with name unix_ti mestamp does not exist! Did you mean "to_timestamp"? LINE 1: select avg(UNIX_TIMESTAMP(timestamp)) from events ^ (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'll look into how Duckdb uses the epoch and epoch_ms functions.

shell
> import duckdb > con=duckdb.connect() > con.execute("SELECT epoch('2024-01-01 00:00:00'::timestamp)").fetchall() > print(con.fetchall()) > EOF [] (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I made a mistake—let's try printing the results instead.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb > con=duckdb.connect() > rows = con.execute("SELECT epoch('2024-01-01 00:00:00'::TIMESTAMP)").fetchall( ) > print(rows) > EOF [(1704067200.0,)] (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'll compare the epoch time in seconds with epoch_ms for accuracy.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb > con=duckdb.connect() > rows = con.execute("SELECT epoch_ms('2024-01-01 00:00:00'::TIMESTAMP)").fetcha ll() > print(rows) > EOF [(1704067200000,)] (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I need to double-check how to convert an epoch back into a timestamp correctly.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb, sys > con=duckdb.connect() > print(con.execute("SELECT to_timestamp(1704067200)").fetchall()) > print(con.execute("SELECT to_timestamp(1704067200000, 'ms')").fetchall()) > EOF Traceback (most recent call last): File "<stdin>", line 3, in <module> duckdb.duckdb.InvalidInputException: Invalid Input Error: Required module 'pytz' failed to import, due to the following Python exception: ModuleNotFoundError: No module named 'pytz' (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

Looks like to_timestamp needs 'pytz'. It’s not installed, so I’ll try using CAST.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb > con=duckdb.connect() > print(con.execute("SELECT CAST(1704067200000 AS TIMESTAMP)").fetchall()) > EOF Traceback (most recent call last): File "<stdin>", line 3, in <module> duckdb.duckdb.ConversionException: Conversion Error: Unimplemented type for cast (BIGINT -> TIMESTAMP) LINE 1: SELECT CAST(1704067200000 AS TIMESTAMP) ^ (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'm looking into converting timestamps using epoch_ms() and to_timestamp(). There may be timezone issues since to_timestamp() requires 'pytz', which might not be available. I'll check duckdb_functions() for other options like EPOCH_MS.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb > con=duckdb.connect() > print(con.execute("SELECT epoch_ms('2024-01-01 00:00:00'::TIMESTAMP)").fetchal l()) > print(con.execute("SELECT epoch_ms('2024-01-01 01:00:00'::TIMESTAMP)").fetchal l()) > print(con.execute("SELECT epoch_ms('2024-01-02 00:00:00'::TIMESTAMP)").fetchal l()) > print(con.execute("SELECT epoch_ms('2024-01-02 03:00:00'::TIMESTAMP)").fetchal l()) > avg = con.execute("SELECT avg(epoch_ms(timestamp)) FROM read_csv_auto('scubadu ck/sample.csv')").fetchone()[0] > print('avgms', avg) > print(con.execute("SELECT epoch_ms(to_timestamp(?,'ms'))", [avg]).fetchall()) > EOF [(1704067200000,)] [(1704070800000,)] [(1704153600000,)] [(1704164400000,)] avgms 1704114000000.0 Traceback (most recent call last): File "<stdin>", line 9, in <module> duckdb.duckdb.BinderException: Binder Error: No function matches the given name and argument types 'to_timestamp(DOUBLE, STRING_LITERAL)'. You might need to add explicit type casts. Candidate functions: to_timestamp(DOUBLE) -> TIMESTAMP WITH TIME ZONE LINE 1: SELECT epoch_ms(to_timestamp(?,'ms')) ^ (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I’ll test converting milliseconds to seconds using to_timestamp. I'll check epoch_ms for bidirectional conversion.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb > con=duckdb.connect() > print(con.execute("SELECT TIMESTAMP 'epoch' + INTERVAL '1 second' * 1704067200 ").fetchall()) > print(con.execute("SELECT TIMESTAMP 'epoch' + INTERVAL '1 millisecond' * 17041 14000000").fetchall()) > EOF [(datetime.datetime(2024, 1, 1, 0, 0),)] Traceback (most recent call last): File "<stdin>", line 4, in <module> duckdb.duckdb.InvalidInputException: Invalid Input Error: Type INT64 with value 1704114000000 can't be cast because the value is out of range for the destinatio n type INT32 (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I need to use BIGINT for milliseconds to prevent overflow. Let's verify this approach.

shell
> import duckdb > con=duckdb.connect() > print(con.execute("SELECT TIMESTAMP 'epoch' + 1704114000 * INTERVAL '1 second' ").fetchall()) > print(con.execute("SELECT TIMESTAMP 'epoch' + 1704114000000 * INTERVAL '1 mill isecond'").fetchall()) > EOF [(datetime.datetime(2024, 1, 1, 13, 0),)] Traceback (most recent call last): File "<stdin>", line 4, in <module> duckdb.duckdb.InvalidInputException: Invalid Input Error: Type INT64 with value 1704114000000 can't be cast because the value is out of range for the destinatio n type INT32 (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

The integer 1704114000000 exceeds the int32 limit, so I'll cast it to BIGINT or DECIMAL.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb > con=duckdb.connect() > print(con.execute("SELECT TIMESTAMP 'epoch' + CAST(1704114000000 AS BIGINT) * INTERVAL '1 millisecond'").fetchall()) > EOF Traceback (most recent call last): File "<stdin>", line 3, in <module> duckdb.duckdb.InvalidInputException: Invalid Input Error: Type INT64 with value 1704114000000 can't be cast because the value is out of range for the destinatio n type INT32 (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

Maybe using "1704114000000" as a string and casting it to BIGINT will solve this.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb > con=duckdb.connect() > print(con.execute("SELECT TIMESTAMP 'epoch' + CAST('1704114000000' AS BIGINT) * INTERVAL '1 millisecond'").fetchall()) > EOF Traceback (most recent call last): File "<stdin>", line 3, in <module> duckdb.duckdb.InvalidInputException: Invalid Input Error: Type INT64 with value 1704114000000 can't be cast because the value is out of range for the destinatio n type INT32 (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

Looks like a 32-bit issue—13-digit numbers may be misinterpreted as 32-bit integers.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb > con=duckdb.connect() > print(con.execute("SELECT 1704114000000::BIGINT").fetchall()) > print(con.execute("SELECT 1704114000000::HUGEINT").fetchall()) > EOF [(1704114000000,)] [(1704114000000,)] (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'll work on computing the timestamp from 1704114000000::BIGINT.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb > con=duckdb.connect() > print(con.execute("SELECT TIMESTAMP 'epoch' + 1704114000 * INTERVAL '1 second' ").fetchall()) > print(con.execute("SELECT TIMESTAMP 'epoch' + 1704114000000::BIGINT * INTERVAL '1 millisecond'").fetchall()) > EOF [(datetime.datetime(2024, 1, 1, 13, 0),)] Traceback (most recent call last): File "<stdin>", line 4, in <module> duckdb.duckdb.InvalidInputException: Invalid Input Error: Type INT64 with value 1704114000000 can't be cast because the value is out of range for the destinatio n type INT32 (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

The INTERVAL type might be causing issues, so I'll try adjusting the multiplier with timestamps.

shell
> import duckdb > con=duckdb.connect() > print(con.execute("SELECT TIMESTAMP 'epoch' + (1704114000000::BIGINT / 1000) * INTERVAL '1 second'").fetchall()) > EOF Traceback (most recent call last): File "<stdin>", line 3, in <module> duckdb.duckdb.BinderException: Binder Error: No function matches the given name and argument types '*(DOUBLE, INTERVAL)'. You might need to add explicit type ca sts. Candidate functions: *(TINYINT, TINYINT) -> TINYINT *(SMALLINT, SMALLINT) -> SMALLINT *(INTEGER, INTEGER) -> INTEGER *(BIGINT, BIGINT) -> BIGINT *(HUGEINT, HUGEINT) -> HUGEINT *(FLOAT, FLOAT) -> FLOAT *(DOUBLE, DOUBLE) -> DOUBLE *(DECIMAL, DECIMAL) -> DECIMAL *(UTINYINT, UTINYINT) -> UTINYINT *(USMALLINT, USMALLINT) -> USMALLINT *(UINTEGER, UINTEGER) -> UINTEGER *(UBIGINT, UBIGINT) -> UBIGINT *(UHUGEINT, UHUGEINT) -> UHUGEINT *(INTERVAL, BIGINT) -> INTERVAL *(BIGINT, INTERVAL) -> INTERVAL LINE 1: SELECT TIMESTAMP 'epoch' + (1704114000000::BIGINT / 1000) * INTERVAL '1 second' ^ (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'll see if there's a built-in function to convert epoch seconds to timestamp.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb > con=duckdb.connect() > print(con.execute("select name from duckdb_functions() where name ilike '%epoc h%'").fetchall()) > EOF Traceback (most recent call last): File "<stdin>", line 3, in <module> duckdb.duckdb.BinderException: Binder Error: Referenced column "name" not found in FROM clause! Candidate bindings: "parameters", "parameter_types", "examples", "comment", "int ernal" LINE 1: select name from duckdb_functions() where name ilike '%epoch%' ^ (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'll run duckdb_functions() to check whether the function is accessible.

shell
> import duckdb > con=duckdb.connect() > con.execute("PRAGMA functions"); > rows = con.fetchall() > print(rows[:10]) > EOF [('!__postfix', 'SCALAR', ['INTEGER'], None, 'HUGEINT', False), ('!~~', 'SCALAR' , ['VARCHAR', 'VARCHAR'], None, 'BOOLEAN', False), ('!~~*', 'SCALAR', ['VARCHAR' , 'VARCHAR'], None, 'BOOLEAN', False), ('%', 'SCALAR', ['UHUGEINT', 'UHUGEINT'], None, 'UHUGEINT', False), ('%', 'SCALAR', ['TINYINT', 'TINYINT'], None, 'TINYIN T', False), ('%', 'SCALAR', ['SMALLINT', 'SMALLINT'], None, 'SMALLINT', False), ('%', 'SCALAR', ['INTEGER', 'INTEGER'], None, 'INTEGER', False), ('%', 'SCALAR', ['BIGINT', 'BIGINT'], None, 'BIGINT', False), ('%', 'SCALAR', ['HUGEINT', 'HUGE INT'], None, 'HUGEINT', False), ('%', 'SCALAR', ['FLOAT', 'FLOAT'], None, 'FLOAT ', False)] (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I can't access docs, so I'll implement the timestamp conversion directly in SQL using epoch.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb > con=duckdb.connect() > res = con.execute("SELECT TIMESTAMP '1970-01-01 00:00:00' + 1704114000 * INTER VAL '1 second'").fetchall() > print(res) > EOF [(datetime.datetime(2024, 1, 1, 13, 0),)] (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I think I can modify build_query to accept column_types to solve the timestamp issue.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# grep -R "build_query" -n scubaduck/server.py:101:def build_query(params: QueryParams) -> str: scubaduck/server.py:323: sql = build_query(params)

I'm changing build_query to accept column_types, making the necessary adjustments in query().

I'm modifying agg_expr for correct handling of time columns and aggregation when no group-by.

I'm updating create_app to pass column_types to build_query and handling timestamps.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb > con=duckdb.connect() > con.execute("CREATE TABLE events AS SELECT * FROM read_csv_auto('scubaduck/sam ple.csv')") > print(con.execute("SELECT TIMESTAMP 'epoch' + avg(epoch(timestamp)) * INTERVAL '1 second' FROM events").fetchall()) > EOF Traceback (most recent call last): File "<stdin>", line 4, in <module> duckdb.duckdb.BinderException: Binder Error: No function matches the given name and argument types '*(DOUBLE, INTERVAL)'. You might need to add explicit type ca sts. Candidate functions: *(TINYINT, TINYINT) -> TINYINT *(SMALLINT, SMALLINT) -> SMALLINT *(INTEGER, INTEGER) -> INTEGER *(BIGINT, BIGINT) -> BIGINT *(HUGEINT, HUGEINT) -> HUGEINT *(FLOAT, FLOAT) -> FLOAT *(DOUBLE, DOUBLE) -> DOUBLE *(DECIMAL, DECIMAL) -> DECIMAL *(UTINYINT, UTINYINT) -> UTINYINT *(USMALLINT, USMALLINT) -> USMALLINT *(UINTEGER, UINTEGER) -> UINTEGER *(UBIGINT, UBIGINT) -> UBIGINT *(UHUGEINT, UHUGEINT) -> UHUGEINT *(INTERVAL, BIGINT) -> INTERVAL *(BIGINT, INTERVAL) -> INTERVAL LINE 1: SELECT TIMESTAMP 'epoch' + avg(epoch(timestamp)) * INTERVAL '1 second' F ROM events ^ (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I need to cast the double to BIGINT or DECIMAL before multiplying. Testing now.

shell
> import duckdb > con=duckdb.connect() > con.execute("CREATE TABLE events AS SELECT * FROM read_csv_auto('scubaduck/sam ple.csv')") > print(con.execute("SELECT TIMESTAMP 'epoch' + INTERVAL '1 second' * avg(epoch( timestamp)) FROM events").fetchall()) > EOF Traceback (most recent call last): File "<stdin>", line 4, in <module> duckdb.duckdb.BinderException: Binder Error: No function matches the given name and argument types '*(INTERVAL, DOUBLE)'. You might need to add explicit type ca sts. Candidate functions: *(TINYINT, TINYINT) -> TINYINT *(SMALLINT, SMALLINT) -> SMALLINT *(INTEGER, INTEGER) -> INTEGER *(BIGINT, BIGINT) -> BIGINT *(HUGEINT, HUGEINT) -> HUGEINT *(FLOAT, FLOAT) -> FLOAT *(DOUBLE, DOUBLE) -> DOUBLE *(DECIMAL, DECIMAL) -> DECIMAL *(UTINYINT, UTINYINT) -> UTINYINT *(USMALLINT, USMALLINT) -> USMALLINT *(UINTEGER, UINTEGER) -> UINTEGER *(UBIGINT, UBIGINT) -> UBIGINT *(UHUGEINT, UHUGEINT) -> UHUGEINT *(INTERVAL, BIGINT) -> INTERVAL *(BIGINT, INTERVAL) -> INTERVAL LINE 1: SELECT TIMESTAMP 'epoch' + INTERVAL '1 second' * avg(epoch(timestamp)) F ROM events ^ (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I’ll cast to BIGINT to get the timestamp in seconds, then multiply by an interval.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb > con=duckdb.connect() > con.execute("CREATE TABLE events AS SELECT * FROM read_csv_auto('scubaduck/sam ple.csv')") > print(con.execute("SELECT TIMESTAMP 'epoch' + INTERVAL '1 second' * CAST(avg(e poch(timestamp)) AS BIGINT) FROM events").fetchall()) > EOF [(datetime.datetime(2024, 1, 1, 13, 0),)] (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I’ll try using avg(epoch_ms(column)) and multiplying by milliseconds, casting to BIGINT.

shell
> import duckdb > con=duckdb.connect() > con.execute("CREATE TABLE events AS SELECT * FROM read_csv_auto('scubaduck/sam ple.csv')") > print(con.execute("SELECT TIMESTAMP 'epoch' + INTERVAL '1 millisecond' * CAST( avg(epoch_ms(timestamp)) AS BIGINT) FROM events").fetchall()) > EOF Traceback (most recent call last): File "<stdin>", line 4, in <module> duckdb.duckdb.InvalidInputException: Invalid Input Error: Type INT64 with value 1704114000000 can't be cast because the value is out of range for the destinatio n type INT32 (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

It seems unnecessary to cast constants to BIGINT since epoch_ms already returns BIGINT.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb > con=duckdb.connect() > print(con.execute("SELECT INTERVAL '1 millisecond' * 1700::BIGINT").fetchall() ) > print(con.execute("SELECT 1700::BIGINT * INTERVAL '1 millisecond'").fetchall() ) > EOF [(datetime.timedelta(seconds=1, microseconds=700000),)] [(datetime.timedelta(seconds=1, microseconds=700000),)] (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

The error occurred due to mismatched data types, but casting should fix it. Let's test.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# python - <<'EOF' > import duckdb > con=duckdb.connect() > con.execute("CREATE TABLE events AS SELECT * FROM read_csv_auto('scubaduck/sam ple.csv')") > print(con.execute("SELECT TIMESTAMP 'epoch' + INTERVAL '1 second' * CAST(avg(e poch(timestamp)) AS BIGINT) FROM events").fetchall()) > EOF [(datetime.datetime(2024, 1, 1, 13, 0),)] (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'm adjusting the query building for aggregation and handling edge cases for group_by and show_hits.

I'll create a test for the case with no group_by but aggregate is applied.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# git status --short (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

The repo is clean, so I'm ready to start implementing the patch now.

shell
dt = dtparser.parse(s) return dt.replace(microsecond=0, tzinfo=None).strftime("%Y-%m-%d %H:%M:%S") def build_query(params: QueryParams) -> str: select_parts: list[str] = [] if params.group_by: select_parts.extend(params.group_by) agg = (params.aggregate or "avg").lower() def agg_expr(col: str) -> str: if agg.startswith("p"): quant = float(agg[1:]) / 100 return f"quantile({col}, {quant})" if agg == "count distinct": return f"count(DISTINCT {col})" return f"{agg}({col})" for col in params.columns: if col in params.group_by: continue select_parts.append(f"{agg_expr(col)} AS {col}") if params.show_hits: select_parts.insert(len(params.group_by), "count(*) AS Hits") else: select_parts.extend(params.columns) for name, expr in params.derived_columns.items(): select_parts.append(f"{expr} AS {name}") select_clause = ", ".join(select_parts) if select_parts else "*" query = f"SELECT {select_clause} FROM events" where_parts: list[str] = [] if params.start: where_parts.append(f"timestamp >= '{params.start}'") if params.end: where_parts.append(f"timestamp <= '{params.end}'") for f in params.filters: op = f.op if op in {"empty", "!empty"}: val = "''" else: if f.value is None: continue if isinstance(f.value, list): if not f.value: continue if op == "=": vals = " OR ".join(f"{f.column} = '{v}'" for v in f.value) where_parts.append(f"({vals})") continue val = f"'{f.value}'" if isinstance(f.value, str) else str(f.value) if op == "contains": where_parts.append(f"{f.column} ILIKE '%' || {val} || '%'") elif op == "!contains": where_parts.append(f"{f.column} NOT ILIKE '%' || {val} || '%'") elif op == "empty": where_parts.append(f"{f.column} = {val}") elif op == "!empty": where_parts.append(f"{f.column} != {val}") else: where_parts.append(f"{f.column} {op} {val}") if where_parts: query += " WHERE " + " AND ".join(where_parts) if params.group_by: query += " GROUP BY " + ", ".join(params.group_by) if params.order_by: query += f" ORDER BY {params.order_by} {params.order_dir}" if params.limit is not None: query += f" LIMIT {params.limit}" return query def create_app(db_file: str | Path | None = None) -> Flask: app = Flask(__name__, static_folder="static") db_path = Path(db_file or Path(__file__).with_name("sample.csv")).resolve() con = _load_database(db_path) column_types: Dict[str, str] = { r[1]: r[2] for r in con.execute("PRAGMA table_info(events)").fetchall() } sample_cache: Dict[Tuple[str, str], Tuple[List[str], float]] = {} CACHE_TTL = 60.0 CACHE_LIMIT = 200 (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'll go ahead and apply the changes to the functions now.

shell
> *** Begin Patch > *** Update File: scubaduck/server.py > @@ > -def build_query(params: QueryParams) -> str: > - select_parts: list[str] = [] > - if params.group_by: > - select_parts.extend(params.group_by) > - agg = (params.aggregate or "avg").lower() > - > - def agg_expr(col: str) -> str: > - if agg.startswith("p"): > - quant = float(agg[1:]) / 100 > - return f"quantile({col}, {quant})" > - if agg == "count distinct": > - return f"count(DISTINCT {col})" > - return f"{agg}({col})" > - > - for col in params.columns: > - if col in params.group_by: > - continue > - select_parts.append(f"{agg_expr(col)} AS {col}") > - if params.show_hits: > - select_parts.insert(len(params.group_by), "count(*) AS Hits") > - else: > - select_parts.extend(params.columns) > +def build_query(params: QueryParams, column_types: Dict[str, str] | None = No ne) -> str: > + select_parts: list[str] = [] > + has_agg = bool(params.group_by) or params.aggregate is not None > + if has_agg: > + select_parts.extend(params.group_by) > + agg = (params.aggregate or "avg").lower() > + > + def agg_expr(col: str) -> str: > + if agg.startswith("p"): > + quant = float(agg[1:]) / 100 > + return f"quantile({col}, {quant})" > + if agg == "count distinct": > + return f"count(DISTINCT {col})" > + if agg == "avg" and column_types is not None: > + ctype = column_types.get(col, "").upper() > + if "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype : > + return ( > + "TIMESTAMP 'epoch' + INTERVAL '1 second' * " > + f"CAST(avg(epoch({col})) AS BIGINT)" > + ) > + return f"{agg}({col})" > + > + for col in params.columns: > + if col in params.group_by: > + continue > + select_parts.append(f"{agg_expr(col)} AS {col}") > + if params.show_hits: > + select_parts.insert(len(params.group_by), "count(*) AS Hits") > + else: > + select_parts.extend(params.columns) > *** End Patch > PATCH Success. Updated the following files: M scubaduck/server.py (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I need to update the call to build_query within the query function.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# grep -n "build_query" -n scu baduck/server.py 101:def build_query(params: QueryParams, column_types: Dict[str, str] | None = N one) -> str: 331: sql = build_query(params) (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'll adjust the function call on line 331.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# sed -n '320,360p' scubaduck/ server.py 400, ) if allow_time and not (is_numeric or is_time): return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) sql = build_query(params) try: rows = con.execute(sql).fetchall() except Exception as exc: tb = traceback.format_exc() print(f"Query failed:\n{sql}\n{tb}") return ( jsonify({"sql": sql, "error": str(exc), "traceback": tb}), 400, ) return jsonify({"sql": sql, "rows": rows}) return app app = create_app() if __name__ == "__main__": app.run(debug=True) (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'll modify the function call to pass the column_types parameter.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# apply_patch<<'PATCH' > *** Begin Patch > *** Update File: scubaduck/server.py > @@ > - sql = build_query(params) > + sql = build_query(params, column_types) > *** End Patch > PATCH Success. Updated the following files: M scubaduck/server.py (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

Time to add the tests in tests/test_web.py and apply the patch.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# grep -n "test_table_group_by _query" -n tests/test_web.py 608:def test_table_group_by_query(page: Any, server_url: str) -> None: (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'll try adding a new test after the test_table_group_by_query section.

shell
page.goto(f"{server_url}?graph_type=table") page.wait_for_selector("#group_by_field", state="visible") border = page.evaluate( "getComputedStyle(document.querySelector('#group_by_field .f-val')).bord erStyle" ) assert border == "none" def test_table_group_by_query(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="timestamp", limit=100, group_by=["user"], aggregate="Count", ) assert "error" not in data assert len(data["rows"]) == 3 (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'll add a new test following this change.

shell
server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="timestamp", limit=100, group_by=["user"], aggregate="Count", ) assert "error" not in data assert len(data["rows"]) == 3 (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I’ll add a new test right after the file ends and implement it.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# apply_patch<<'PATCH' > *** Begin Patch > *** Update File: tests/test_web.py > @@ > def test_table_group_by_query(page: Any, server_url: str) -> None: > @@ > assert len(data["rows"]) == 3 > + > + > +def test_table_avg_no_group_by(page: Any, server_url: str) -> None: > + data = run_query( > + page, > + server_url, > + aggregate="Avg", > + ) > + assert len(data["rows"]) == 1 > + row = data["rows"][0] > + assert row[0] == 4 > + from dateutil import parser > + > + ts = parser.parse(row[1]).replace(tzinfo=None) > + assert ts == parser.parse("2024-01-01 13:00:00") > + assert row[2] == 25 > *** End Patch > PATCH Success. Updated the following files: M tests/test_web.py (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'll run formatting, linting, and type checks after the test insert.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# ruff format scubaduck/server .py tests/test_web.py 2 files left unchanged (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'll go ahead and run the ruff linter to check for issues.

shell
py tests/test_web.py All checks passed! (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

It seems like ruff check passed. Now, I'll move on to running pyright.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# pyright scubaduck/server.py tests/test_web.py > /tmp/pyright.log && tail -n 20 /tmp/pyright.log
0 errors, 0 warnings, 0 informations (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'll run all tests per the instructions, even though I can't show the failing ones yet.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# pytest -q > /tmp/pytest.log && tail -n 20 /tmp/pytest.log



bringing up nodes... bringing up nodes... ............................................ [100%] 44 passed in 8.61s (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

Tests passed, now I’m taking a look at the logs for more details.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# tail -n 20 /tmp/pytest.log bringing up nodes... bringing up nodes... ............................................ [100%] 44 passed in 8.61s (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

Time to commit the changes I've made now!

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# git status --short M scubaduck/server.py M tests/test_web.py
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# git add scubaduck/server.py tests/test_web.py
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# git commit -m "test: verify table avg without group" && git status --short [work db62067] test: verify table avg without group 2 files changed, 27 insertions(+), 3 deletions(-) (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I see the commit message should reflect the server fix, not just the test.

shell
commit db620676d4bc38f3d7ee1d48e8ea96d41d0e1829 (HEAD -> work) Author: Codex <codex@openai.com> Date: Wed May 21 02:35:14 2025 +0000 test: verify table avg without group scubaduck/server.py | 14 +++++++++++--- tests/test_web.py | 16 ++++++++++++++++ 2 files changed, 27 insertions(+), 3 deletions(-) (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

The commit message shouldn't be modified, so I'll leave it as is for now. I'll check for uncommitted changes.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'll grab the lines from server.py that correspond to the changes I made.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# nl -ba scubaduck/server.py | sed -n '98,148p' 98 return dt.replace(microsecond=0, tzinfo=None).strftime("%Y-%m-%d %H: %M:%S") 99 100 101 def build_query(params: QueryParams, column_types: Dict[str, str] | None = None) -> str: 102 select_parts: list[str] = [] 103 has_agg = bool(params.group_by) or params.aggregate is not None 104 if has_agg: 105 select_parts.extend(params.group_by) 106 agg = (params.aggregate or "avg").lower() 107 108 def agg_expr(col: str) -> str: 109 if agg.startswith("p"): 110 quant = float(agg[1:]) / 100 111 return f"quantile({col}, {quant})" 112 if agg == "count distinct": 113 return f"count(DISTINCT {col})" 114 if agg == "avg" and column_types is not None: 115 ctype = column_types.get(col, "").upper() 116 if "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype: 117 return ( 118 "TIMESTAMP 'epoch' + INTERVAL '1 second' * " 119 f"CAST(avg(epoch({col})) AS BIGINT)" 120 ) 121 return f"{agg}({col})" 122 123 for col in params.columns: 124 if col in params.group_by: 125 continue 126 select_parts.append(f"{agg_expr(col)} AS {col}") 127 if params.show_hits: 128 select_parts.insert(len(params.group_by), "count(*) AS Hits" ) 129 else: 130 select_parts.extend(params.columns) 131 for name, expr in params.derived_columns.items(): 132 select_parts.append(f"{expr} AS {name}") 133 select_clause = ", ".join(select_parts) if select_parts else "*" 134 query = f"SELECT {select_clause} FROM events" 135 where_parts: list[str] = [] 136 if params.start: 137 where_parts.append(f"timestamp >= '{params.start}'") 138 if params.end: 139 where_parts.append(f"timestamp <= '{params.end}'") 140 for f in params.filters: 141 op = f.op 142 if op in {"empty", "!empty"}: 143 val = "''" 144 else: 145 if f.value is None: 146 continue 147 if isinstance(f.value, list): 148 if not f.value: (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I need to identify the line ranges near the call modification.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# nl -ba scubaduck/server.py | sed -n '328,336p' 328 ), 329 400, 330 ) 331 sql = build_query(params, column_types) 332 try: 333 rows = con.execute(sql).fetchall() 334 except Exception as exc: 335 tb = traceback.format_exc() 336 print(f"Query failed:\n{sql}\n{tb}") (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'm grabbing the lines from tests/test_web.py to add a new test.

shell
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# nl -ba tests/test_web.py | s ed -n '608,630p' 608 def test_table_group_by_query(page: Any, server_url: str) -> None: 609 data = run_query( 610 page, 611 server_url, 612 start="2024-01-01 00:00:00", 613 end="2024-01-03 00:00:00", 614 order_by="timestamp", 615 limit=100, 616 group_by=["user"], 617 aggregate="Count", 618 ) 619 assert "error" not in data 620 assert len(data["rows"]) == 3 621 622 623 def test_table_avg_no_group_by(page: Any, server_url: str) -> None: 624 data = run_query( 625 page, 626 server_url, 627 aggregate="Avg", 628 ) 629 assert len(data["rows"]) == 1 630 row = data["rows"][0]
(scubaduck) root@947ba2ae34e4:/workspace/scubaduck# nl -ba tests/test_web.py | s ed -n '630,650p' 630 row = data["rows"][0] 631 assert row[0] == 4 632 from dateutil import parser 633 634 ts = parser.parse(row[1]).replace(tzinfo=None) 635 assert ts == parser.parse("2024-01-01 13:00:00") 636 assert row[2] == 25 (scubaduck) root@947ba2ae34e4:/workspace/scubaduck#

I'll gather line ranges first, then craft the PR message with test references.