Codex Task Logs

Task ID: task_e_682d4e6e23e08323a16ce1b6e2e2b5ee

Environment setup
Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) python-slugify ------------------------------ 9.82 KiB/9.82 KiB pyee ------------------------------ 15.36 KiB/15.36 KiB markupsafe ------------------------------ 22.58 KiB/22.58 KiB execnet ------------------------------ 30.88 KiB/39.66 KiB requests ------------------------------ 32.00 KiB/63.41 KiB packaging ------------------------------ 32.00 KiB/64.91 KiB text-unidecode ------------------------------ 76.32 KiB/76.32 KiB click ------------------------------ 64.00 KiB/99.76 KiB flask ------------------------------ 78.88 KiB/100.88 KiB urllib3 ------------------------------ 46.88 KiB/125.66 KiB jinja2 ------------------------------ 93.56 KiB/131.74 KiB charset-normalizer ------------------------------ 78.20 KiB/145.08 KiB certifi ------------------------------ 155.88 KiB/155.88 KiB werkzeug ------------------------------ 77.00 KiB/219.24 KiB python-dateutil ------------------------------ 30.86 KiB/224.50 KiB pytest ------------------------------ 30.88 KiB/335.58 KiB greenlet ------------------------------ 16.00 KiB/589.71 KiB pyright ------------------------------ 16.00 KiB/5.31 MiB ruff ------------------------------ 32.00 KiB/11.02 MiB duckdb ------------------------------ 158.06 KiB/19.27 MiB playwright ------------------------------ 62.91 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) pyee ------------------------------ 15.36 KiB/15.36 KiB markupsafe ------------------------------ 22.58 KiB/22.58 KiB execnet ------------------------------ 30.88 KiB/39.66 KiB requests ------------------------------ 32.00 KiB/63.41 KiB packaging ------------------------------ 32.00 KiB/64.91 KiB text-unidecode ------------------------------ 76.32 KiB/76.32 KiB click ------------------------------ 64.00 KiB/99.76 KiB flask ------------------------------ 78.88 KiB/100.88 KiB urllib3 ------------------------------ 46.88 KiB/125.66 KiB jinja2 ------------------------------ 93.56 KiB/131.74 KiB charset-normalizer ------------------------------ 94.20 KiB/145.08 KiB certifi ------------------------------ 155.88 KiB/155.88 KiB werkzeug ------------------------------ 77.00 KiB/219.24 KiB python-dateutil ------------------------------ 30.86 KiB/224.50 KiB pytest ------------------------------ 46.88 KiB/335.58 KiB greenlet ------------------------------ 16.00 KiB/589.71 KiB pyright ------------------------------ 16.00 KiB/5.31 MiB ruff ------------------------------ 32.00 KiB/11.02 MiB duckdb ------------------------------ 158.06 KiB/19.27 MiB playwright ------------------------------ 62.91 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) pyee ------------------------------ 15.36 KiB/15.36 KiB markupsafe ------------------------------ 22.58 KiB/22.58 KiB execnet ------------------------------ 30.88 KiB/39.66 KiB requests ------------------------------ 48.00 KiB/63.41 KiB packaging ------------------------------ 48.00 KiB/64.91 KiB click ------------------------------ 80.00 KiB/99.76 KiB flask ------------------------------ 78.88 KiB/100.88 KiB urllib3 ------------------------------ 62.88 KiB/125.66 KiB jinja2 ------------------------------ 109.56 KiB/131.74 KiB charset-normalizer ------------------------------ 126.20 KiB/145.08 KiB certifi ------------------------------ 155.88 KiB/155.88 KiB werkzeug ------------------------------ 93.00 KiB/219.24 KiB python-dateutil ------------------------------ 46.86 KiB/224.50 KiB pytest ------------------------------ 62.88 KiB/335.58 KiB greenlet ------------------------------ 32.00 KiB/589.71 KiB pyright ------------------------------ 16.00 KiB/5.31 MiB ruff ------------------------------ 78.17 KiB/11.02 MiB duckdb ------------------------------ 254.06 KiB/19.27 MiB playwright ------------------------------ 78.91 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) pyee ------------------------------ 15.36 KiB/15.36 KiB execnet ------------------------------ 30.88 KiB/39.66 KiB requests ------------------------------ 48.00 KiB/63.41 KiB packaging ------------------------------ 48.00 KiB/64.91 KiB click ------------------------------ 80.00 KiB/99.76 KiB flask ------------------------------ 78.88 KiB/100.88 KiB urllib3 ------------------------------ 62.88 KiB/125.66 KiB jinja2 ------------------------------ 109.56 KiB/131.74 KiB charset-normalizer ------------------------------ 126.20 KiB/145.08 KiB certifi ------------------------------ 155.88 KiB/155.88 KiB werkzeug ------------------------------ 93.00 KiB/219.24 KiB python-dateutil ------------------------------ 46.86 KiB/224.50 KiB pytest ------------------------------ 62.88 KiB/335.58 KiB greenlet ------------------------------ 32.00 KiB/589.71 KiB pyright ------------------------------ 16.00 KiB/5.31 MiB ruff ------------------------------ 110.17 KiB/11.02 MiB duckdb ------------------------------ 270.06 KiB/19.27 MiB playwright ------------------------------ 78.91 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) execnet ------------------------------ 30.88 KiB/39.66 KiB requests ------------------------------ 48.00 KiB/63.41 KiB packaging ------------------------------ 48.00 KiB/64.91 KiB click ------------------------------ 80.00 KiB/99.76 KiB flask ------------------------------ 78.88 KiB/100.88 KiB urllib3 ------------------------------ 77.80 KiB/125.66 KiB jinja2 ------------------------------ 125.56 KiB/131.74 KiB charset-normalizer ------------------------------ 126.20 KiB/145.08 KiB certifi ------------------------------ 155.88 KiB/155.88 KiB werkzeug ------------------------------ 93.00 KiB/219.24 KiB python-dateutil ------------------------------ 46.86 KiB/224.50 KiB pytest ------------------------------ 62.88 KiB/335.58 KiB greenlet ------------------------------ 32.00 KiB/589.71 KiB pyright ------------------------------ 16.00 KiB/5.31 MiB ruff ------------------------------ 126.17 KiB/11.02 MiB duckdb ------------------------------ 286.06 KiB/19.27 MiB playwright ------------------------------ 78.91 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) execnet ------------------------------ 39.66 KiB/39.66 KiB requests ------------------------------ 48.00 KiB/63.41 KiB packaging ------------------------------ 64.91 KiB/64.91 KiB click ------------------------------ 96.00 KiB/99.76 KiB flask ------------------------------ 94.88 KiB/100.88 KiB urllib3 ------------------------------ 77.80 KiB/125.66 KiB jinja2 ------------------------------ 125.56 KiB/131.74 KiB charset-normalizer ------------------------------ 126.20 KiB/145.08 KiB werkzeug ------------------------------ 93.00 KiB/219.24 KiB python-dateutil ------------------------------ 62.86 KiB/224.50 KiB pytest ------------------------------ 76.88 KiB/335.58 KiB greenlet ------------------------------ 32.00 KiB/589.71 KiB pyright ------------------------------ 16.00 KiB/5.31 MiB ruff ------------------------------ 158.17 KiB/11.02 MiB duckdb ------------------------------ 318.06 KiB/19.27 MiB playwright ------------------------------ 78.91 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) execnet ------------------------------ 39.66 KiB/39.66 KiB requests ------------------------------ 63.41 KiB/63.41 KiB packaging ------------------------------ 64.91 KiB/64.91 KiB click ------------------------------ 99.76 KiB/99.76 KiB flask ------------------------------ 100.88 KiB/100.88 KiB urllib3 ------------------------------ 77.80 KiB/125.66 KiB jinja2 ------------------------------ 131.74 KiB/131.74 KiB charset-normalizer ------------------------------ 142.20 KiB/145.08 KiB werkzeug ------------------------------ 109.00 KiB/219.24 KiB python-dateutil ------------------------------ 93.38 KiB/224.50 KiB pytest ------------------------------ 108.88 KiB/335.58 KiB greenlet ------------------------------ 48.00 KiB/589.71 KiB pyright ------------------------------ 128.00 KiB/5.31 MiB ruff ------------------------------ 270.17 KiB/11.02 MiB duckdb ------------------------------ 429.61 KiB/19.27 MiB playwright ------------------------------ 94.91 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) execnet ------------------------------ 39.66 KiB/39.66 KiB requests ------------------------------ 63.41 KiB/63.41 KiB packaging ------------------------------ 64.91 KiB/64.91 KiB flask ------------------------------ 100.88 KiB/100.88 KiB urllib3 ------------------------------ 93.80 KiB/125.66 KiB jinja2 ------------------------------ 131.74 KiB/131.74 KiB charset-normalizer ------------------------------ 142.20 KiB/145.08 KiB werkzeug ------------------------------ 109.00 KiB/219.24 KiB python-dateutil ------------------------------ 141.38 KiB/224.50 KiB pytest ------------------------------ 124.88 KiB/335.58 KiB greenlet ------------------------------ 62.48 KiB/589.71 KiB pyright ------------------------------ 160.00 KiB/5.31 MiB ruff ------------------------------ 318.17 KiB/11.02 MiB duckdb ------------------------------ 477.61 KiB/19.27 MiB playwright ------------------------------ 94.91 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) execnet ------------------------------ 39.66 KiB/39.66 KiB packaging ------------------------------ 64.91 KiB/64.91 KiB flask ------------------------------ 100.88 KiB/100.88 KiB urllib3 ------------------------------ 93.80 KiB/125.66 KiB jinja2 ------------------------------ 131.74 KiB/131.74 KiB charset-normalizer ------------------------------ 145.08 KiB/145.08 KiB werkzeug ------------------------------ 109.00 KiB/219.24 KiB python-dateutil ------------------------------ 205.38 KiB/224.50 KiB pytest ------------------------------ 124.88 KiB/335.58 KiB greenlet ------------------------------ 78.48 KiB/589.71 KiB pyright ------------------------------ 224.00 KiB/5.31 MiB ruff ------------------------------ 382.17 KiB/11.02 MiB duckdb ------------------------------ 541.61 KiB/19.27 MiB playwright ------------------------------ 94.91 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) execnet ------------------------------ 39.66 KiB/39.66 KiB flask ------------------------------ 100.88 KiB/100.88 KiB urllib3 ------------------------------ 93.80 KiB/125.66 KiB jinja2 ------------------------------ 131.74 KiB/131.74 KiB charset-normalizer ------------------------------ 145.08 KiB/145.08 KiB werkzeug ------------------------------ 125.00 KiB/219.24 KiB python-dateutil ------------------------------ 221.38 KiB/224.50 KiB pytest ------------------------------ 124.88 KiB/335.58 KiB greenlet ------------------------------ 94.48 KiB/589.71 KiB pyright ------------------------------ 240.00 KiB/5.31 MiB ruff ------------------------------ 382.17 KiB/11.02 MiB duckdb ------------------------------ 541.61 KiB/19.27 MiB playwright ------------------------------ 94.91 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) flask ------------------------------ 100.88 KiB/100.88 KiB urllib3 ------------------------------ 93.80 KiB/125.66 KiB jinja2 ------------------------------ 131.74 KiB/131.74 KiB charset-normalizer ------------------------------ 145.08 KiB/145.08 KiB werkzeug ------------------------------ 125.00 KiB/219.24 KiB python-dateutil ------------------------------ 221.38 KiB/224.50 KiB pytest ------------------------------ 124.88 KiB/335.58 KiB greenlet ------------------------------ 110.48 KiB/589.71 KiB pyright ------------------------------ 249.81 KiB/5.31 MiB ruff ------------------------------ 398.17 KiB/11.02 MiB duckdb ------------------------------ 557.61 KiB/19.27 MiB playwright ------------------------------ 94.91 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) urllib3 ------------------------------ 93.80 KiB/125.66 KiB jinja2 ------------------------------ 131.74 KiB/131.74 KiB charset-normalizer ------------------------------ 145.08 KiB/145.08 KiB werkzeug ------------------------------ 125.00 KiB/219.24 KiB python-dateutil ------------------------------ 221.38 KiB/224.50 KiB pytest ------------------------------ 124.88 KiB/335.58 KiB greenlet ------------------------------ 126.48 KiB/589.71 KiB pyright ------------------------------ 249.81 KiB/5.31 MiB ruff ------------------------------ 414.17 KiB/11.02 MiB duckdb ------------------------------ 573.61 KiB/19.27 MiB playwright ------------------------------ 94.91 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) urllib3 ------------------------------ 93.80 KiB/125.66 KiB charset-normalizer ------------------------------ 145.08 KiB/145.08 KiB werkzeug ------------------------------ 125.00 KiB/219.24 KiB python-dateutil ------------------------------ 221.38 KiB/224.50 KiB pytest ------------------------------ 140.88 KiB/335.58 KiB greenlet ------------------------------ 126.48 KiB/589.71 KiB pyright ------------------------------ 249.81 KiB/5.31 MiB ruff ------------------------------ 414.17 KiB/11.02 MiB duckdb ------------------------------ 573.61 KiB/19.27 MiB playwright ------------------------------ 94.91 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) urllib3 ------------------------------ 93.80 KiB/125.66 KiB werkzeug ------------------------------ 125.00 KiB/219.24 KiB python-dateutil ------------------------------ 221.38 KiB/224.50 KiB pytest ------------------------------ 140.88 KiB/335.58 KiB greenlet ------------------------------ 142.48 KiB/589.71 KiB pyright ------------------------------ 265.81 KiB/5.31 MiB ruff ------------------------------ 430.17 KiB/11.02 MiB duckdb ------------------------------ 589.61 KiB/19.27 MiB playwright ------------------------------ 110.91 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) urllib3 ------------------------------ 109.80 KiB/125.66 KiB werkzeug ------------------------------ 141.00 KiB/219.24 KiB pytest ------------------------------ 188.88 KiB/335.58 KiB greenlet ------------------------------ 302.48 KiB/589.71 KiB pyright ------------------------------ 425.81 KiB/5.31 MiB ruff ------------------------------ 590.17 KiB/11.02 MiB duckdb ------------------------------ 749.61 KiB/19.27 MiB playwright ------------------------------ 110.91 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) urllib3 ------------------------------ 109.80 KiB/125.66 KiB werkzeug ------------------------------ 141.00 KiB/219.24 KiB pytest ------------------------------ 188.88 KiB/335.58 KiB greenlet ------------------------------ 350.48 KiB/589.71 KiB pyright ------------------------------ 473.81 KiB/5.31 MiB ruff ------------------------------ 638.17 KiB/11.02 MiB duckdb ------------------------------ 781.61 KiB/19.27 MiB playwright ------------------------------ 110.91 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) werkzeug ------------------------------ 157.00 KiB/219.24 KiB pytest ------------------------------ 220.88 KiB/335.58 KiB greenlet ------------------------------ 462.48 KiB/589.71 KiB pyright ------------------------------ 761.81 KiB/5.31 MiB ruff ------------------------------ 926.17 KiB/11.02 MiB duckdb ------------------------------ 1.06 MiB/19.27 MiB playwright ------------------------------ 286.91 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (5/33) werkzeug ------------------------------ 189.00 KiB/219.24 KiB pytest ------------------------------ 236.88 KiB/335.58 KiB greenlet ------------------------------ 478.48 KiB/589.71 KiB pyright ------------------------------ 909.44 KiB/5.31 MiB ruff ------------------------------ 1.07 MiB/11.02 MiB duckdb ------------------------------ 1.22 MiB/19.27 MiB playwright ------------------------------ 456.56 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (25/33) pytest ------------------------------ 284.88 KiB/335.58 KiB greenlet ------------------------------ 494.48 KiB/589.71 KiB pyright ------------------------------ 1.23 MiB/5.31 MiB ruff ------------------------------ 1.43 MiB/11.02 MiB duckdb ------------------------------ 1.58 MiB/19.27 MiB playwright ------------------------------ 808.56 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (25/33) pytest ------------------------------ 316.88 KiB/335.58 KiB greenlet ------------------------------ 494.48 KiB/589.71 KiB pyright ------------------------------ 1.33 MiB/5.31 MiB ruff ------------------------------ 1.64 MiB/11.02 MiB duckdb ------------------------------ 1.78 MiB/19.27 MiB playwright ------------------------------ 1.00 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (25/33) greenlet ------------------------------ 510.48 KiB/589.71 KiB pyright ------------------------------ 1.67 MiB/5.31 MiB ruff ------------------------------ 2.05 MiB/11.02 MiB duckdb ------------------------------ 2.20 MiB/19.27 MiB playwright ------------------------------ 1.41 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (25/33) greenlet ------------------------------ 542.48 KiB/589.71 KiB pyright ------------------------------ 1.78 MiB/5.31 MiB ruff ------------------------------ 2.22 MiB/11.02 MiB duckdb ------------------------------ 2.35 MiB/19.27 MiB playwright ------------------------------ 1.56 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (25/33) greenlet ------------------------------ 589.71 KiB/589.71 KiB pyright ------------------------------ 1.81 MiB/5.31 MiB ruff ------------------------------ 2.97 MiB/11.02 MiB duckdb ------------------------------ 3.12 MiB/19.27 MiB playwright ------------------------------ 2.31 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (25/33) pyright ------------------------------ 1.81 MiB/5.31 MiB ruff ------------------------------ 3.14 MiB/11.02 MiB duckdb ------------------------------ 3.29 MiB/19.27 MiB playwright ------------------------------ 2.48 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (25/33) pyright ------------------------------ 1.83 MiB/5.31 MiB ruff ------------------------------ 3.65 MiB/11.02 MiB duckdb ------------------------------ 3.81 MiB/19.27 MiB playwright ------------------------------ 3.02 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 1.87 MiB/5.31 MiB ruff ------------------------------ 4.42 MiB/11.02 MiB duckdb ------------------------------ 4.59 MiB/19.27 MiB playwright ------------------------------ 3.78 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 1.92 MiB/5.31 MiB ruff ------------------------------ 5.24 MiB/11.02 MiB duckdb ------------------------------ 5.42 MiB/19.27 MiB playwright ------------------------------ 4.59 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 1.95 MiB/5.31 MiB ruff ------------------------------ 6.08 MiB/11.02 MiB duckdb ------------------------------ 6.26 MiB/19.27 MiB playwright ------------------------------ 5.44 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 1.98 MiB/5.31 MiB ruff ------------------------------ 6.90 MiB/11.02 MiB duckdb ------------------------------ 7.09 MiB/19.27 MiB playwright ------------------------------ 6.27 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.03 MiB/5.31 MiB ruff ------------------------------ 7.67 MiB/11.02 MiB duckdb ------------------------------ 7.86 MiB/19.27 MiB playwright ------------------------------ 7.03 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.08 MiB/5.31 MiB ruff ------------------------------ 8.47 MiB/11.02 MiB duckdb ------------------------------ 8.65 MiB/19.27 MiB playwright ------------------------------ 7.83 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.09 MiB/5.31 MiB ruff ------------------------------ 9.29 MiB/11.02 MiB duckdb ------------------------------ 9.50 MiB/19.27 MiB playwright ------------------------------ 8.64 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.12 MiB/5.31 MiB ruff ------------------------------ 10.12 MiB/11.02 MiB duckdb ------------------------------ 10.30 MiB/19.27 MiB playwright ------------------------------ 9.52 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.14 MiB/5.31 MiB ruff ------------------------------ 10.91 MiB/11.02 MiB duckdb ------------------------------ 11.11 MiB/19.27 MiB playwright ------------------------------ 10.31 MiB/43.05 MiB Built scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.14 MiB/5.31 MiB ruff ------------------------------ 11.02 MiB/11.02 MiB duckdb ------------------------------ 11.27 MiB/19.27 MiB playwright ------------------------------ 10.45 MiB/43.05 MiB Preparing packages... (28/33) pyright ------------------------------ 2.14 MiB/5.31 MiB duckdb ------------------------------ 11.30 MiB/19.27 MiB playwright ------------------------------ 10.48 MiB/43.05 MiB Preparing packages... (28/33) pyright ------------------------------ 2.17 MiB/5.31 MiB duckdb ------------------------------ 12.17 MiB/19.27 MiB playwright ------------------------------ 11.33 MiB/43.05 MiB Preparing packages... (28/33) pyright ------------------------------ 2.19 MiB/5.31 MiB duckdb ------------------------------ 13.44 MiB/19.27 MiB playwright ------------------------------ 12.64 MiB/43.05 MiB Preparing packages... (28/33) pyright ------------------------------ 2.20 MiB/5.31 MiB duckdb ------------------------------ 14.70 MiB/19.27 MiB playwright ------------------------------ 13.88 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.22 MiB/5.31 MiB duckdb ------------------------------ 15.94 MiB/19.27 MiB playwright ------------------------------ 15.13 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.23 MiB/5.31 MiB duckdb ------------------------------ 17.23 MiB/19.27 MiB playwright ------------------------------ 16.39 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.25 MiB/5.31 MiB duckdb ------------------------------ 18.45 MiB/19.27 MiB playwright ------------------------------ 17.62 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.26 MiB/5.31 MiB duckdb ------------------------------ 19.20 MiB/19.27 MiB playwright ------------------------------ 18.97 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.30 MiB/5.31 MiB playwright ------------------------------ 20.06 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.34 MiB/5.31 MiB playwright ------------------------------ 20.74 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.39 MiB/5.31 MiB playwright ------------------------------ 23.12 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.42 MiB/5.31 MiB playwright ------------------------------ 25.66 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.44 MiB/5.31 MiB playwright ------------------------------ 28.16 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.47 MiB/5.31 MiB playwright ------------------------------ 30.91 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.50 MiB/5.31 MiB playwright ------------------------------ 33.45 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.53 MiB/5.31 MiB playwright ------------------------------ 35.73 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.58 MiB/5.31 MiB playwright ------------------------------ 38.11 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.61 MiB/5.31 MiB playwright ------------------------------ 39.72 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.64 MiB/5.31 MiB playwright ------------------------------ 40.90 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.73 MiB/5.31 MiB playwright ------------------------------ 41.41 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.79 MiB/5.31 MiB playwright ------------------------------ 42.50 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.81 MiB/5.31 MiB Preparing packages... (31/33) pyright ------------------------------ 2.92 MiB/5.31 MiB Preparing packages... (31/33) pyright ------------------------------ 3.08 MiB/5.31 MiB Preparing packages... (31/33) pyright ------------------------------ 3.22 MiB/5.31 MiB Preparing packages... (32/33) pyright ------------------------------ 3.33 MiB/5.31 MiB Preparing packages... (32/33) pyright ------------------------------ 3.51 MiB/5.31 MiB Preparing packages... (32/33) pyright ------------------------------ 3.70 MiB/5.31 MiB Preparing packages... (32/33) pyright ------------------------------ 3.90 MiB/5.31 MiB Preparing packages... (32/33) pyright ------------------------------ 4.20 MiB/5.31 MiB Preparing packages... (32/33) pyright ------------------------------ 4.39 MiB/5.31 MiB Preparing packages... (32/33) pyright ------------------------------ 4.53 MiB/5.31 MiB Preparing packages... (32/33) Prepared 33 packages in 2.54s ░░░░░░░░░░░░░░░░░░░░ [0/0] Installing wheels... ░░░░░░░░░░░░░░░░░░░░ [0/33] Installing wheels... ░░░░░░░░░░░░░░░░░░░░ [0/33] iniconfig==2.1.0 ░░░░░░░░░░░░░░░░░░░░ [1/33] iniconfig==2.1.0 ░░░░░░░░░░░░░░░░░░░░ [1/33] click==8.2.0 █░░░░░░░░░░░░░░░░░░░ [2/33] click==8.2.0 █░░░░░░░░░░░░░░░░░░░ [2/33] nodeenv==1.9.1 █░░░░░░░░░░░░░░░░░░░ [3/33] nodeenv==1.9.1 █░░░░░░░░░░░░░░░░░░░ [3/33] requests==2.32.3 ██░░░░░░░░░░░░░░░░░░ [4/33] requests==2.32.3 ██░░░░░░░░░░░░░░░░░░ [4/33] itsdangerous==2.2.0 ███░░░░░░░░░░░░░░░░░ [5/33] itsdangerous==2.2.0 ███░░░░░░░░░░░░░░░░░ [5/33] pytest-base-url==2.1.0 ███░░░░░░░░░░░░░░░░░ [6/33] pytest-base-url==2.1.0 ███░░░░░░░░░░░░░░░░░ [6/33] pluggy==1.6.0 ████░░░░░░░░░░░░░░░░ [7/33] pluggy==1.6.0 ████░░░░░░░░░░░░░░░░ [7/33] packaging==25.0 ████░░░░░░░░░░░░░░░░ [8/33] packaging==25.0 ████░░░░░░░░░░░░░░░░ [8/33] idna==3.10 █████░░░░░░░░░░░░░░░ [9/33] idna==3.10 ███████████████████░ [32/33] pyright==1.1.400 ████████████████████ [33/33] pyright==1.1.400 Installed 33 packages in 113ms + blinker==1.9.0 + certifi==2025.4.26 + charset-normalizer==3.4.2 + click==8.2.0 + duckdb==1.2.2 + execnet==2.1.1 + flask==3.1.1 + greenlet==3.2.2 + idna==3.10 + iniconfig==2.1.0 + itsdangerous==2.2.0 + jinja2==3.1.6 + markupsafe==3.0.2 + nodeenv==1.9.1 + packaging==25.0 + playwright==1.52.0 + pluggy==1.6.0 + pyee==13.0.0 + pyright==1.1.400 + pytest==8.3.5 + pytest-base-url==2.1.0 + pytest-playwright==0.7.0 + pytest-xdist==3.6.1 + python-dateutil==2.9.0.post0 + python-slugify==8.0.4 + requests==2.32.3 + ruff==0.11.10 + scubaduck==0.1.0 (from file:///workspace/scubaduck) + six==1.17.0 + text-unidecode==1.3 + typing-extensions==4.13.2 + urllib3==2.4.0 + werkzeug==3.1.3 ++ source .venv/bin/activate +++ '[' -z '' ']' +++ '[' -n x ']' +++ SCRIPT_PATH=.venv/bin/activate +++ '[' .venv/bin/activate = /tmp/MwaiaH-setup_script.sh ']' +++ deactivate nondestructive +++ unset -f pydoc +++ '[' -z '' ']' +++ '[' -z '' ']' +++ hash -r +++ '[' -z '' ']' +++ unset VIRTUAL_ENV +++ unset VIRTUAL_ENV_PROMPT +++ '[' '!' nondestructive = nondestructive ']' +++ VIRTUAL_ENV=/workspace/scubaduck/.venv +++ '[' linux-gnu = cygwin ']' +++ '[' linux-gnu = msys ']' +++ export VIRTUAL_ENV +++ '[' -z '' ']' +++ unset SCRIPT_PATH +++ _OLD_VIRTUAL_PATH=/root/.cargo/bin:/root/.rbenv/shims:/root/.rbenv/bin:/root/.rbenv/shims:/root/.local/share/swiftly/bin:/root/.bun/bin:/root/.nvm/versions/node/v22.15.1/bin:/root/.pyenv/shims:3441PYENV_ROOT/shims:/root/.pyenv/bin:/usr/local/go/bin:/root/go/bin:/root/.rbenv/bin:/root/.rbenv/shims:/root/.bun/bin:/root/.local/bin:/root/.pyenv/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin +++ PATH=/workspace/scubaduck/.venv/bin:/root/.cargo/bin:/root/.rbenv/shims:/root/.rbenv/bin:/root/.rbenv/shims:/root/.local/share/swiftly/bin:/root/.bun/bin:/root/.nvm/versions/node/v22.15.1/bin:/root/.pyenv/shims:3441PYENV_ROOT/shims:/root/.pyenv/bin:/usr/local/go/bin:/root/go/bin:/root/.rbenv/bin:/root/.rbenv/shims:/root/.bun/bin:/root/.local/bin:/root/.pyenv/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin +++ export PATH +++ '[' xscubaduck '!=' x ']' +++ VIRTUAL_ENV_PROMPT='(scubaduck) ' +++ export VIRTUAL_ENV_PROMPT +++ '[' -z '' ']' +++ '[' -z '' ']' +++ _OLD_VIRTUAL_PS1= +++ PS1='(scubaduck) ' +++ export PS1 +++ alias pydoc +++ true +++ hash -r ++ playwright install chromium Downloading Chromium 136.0.7103.25 (playwright build v1169) from https://cdn.playwright.dev/dbazure/download/playwright/builds/chromium/1169/chromium-linux.zip 167.7 MiB [] 0% 0.0s167.7 MiB [] 0% 30.7s167.7 MiB [] 0% 32.3s167.7 MiB [] 0% 24.4s167.7 MiB [] 0% 13.1s167.7 MiB [] 1% 7.2s167.7 MiB [] 1% 5.6s167.7 MiB [] 2% 4.8s167.7 MiB [] 3% 3.9s167.7 MiB [] 4% 3.1s167.7 MiB [] 5% 2.7s167.7 MiB [] 6% 2.6s167.7 MiB [] 7% 2.3s167.7 MiB [] 8% 2.2s167.7 MiB [] 10% 2.1s167.7 MiB [] 10% 2.0s167.7 MiB [] 12% 1.8s167.7 MiB [] 13% 1.7s167.7 MiB [] 15% 1.7s167.7 MiB [] 16% 1.6s167.7 MiB [] 18% 1.6s167.7 MiB [] 19% 1.5s167.7 MiB [] 20% 1.4s167.7 MiB [] 22% 1.4s167.7 MiB [] 23% 1.3s167.7 MiB [] 24% 1.3s167.7 MiB [] 26% 1.2s167.7 MiB [] 27% 1.2s167.7 MiB [] 29% 1.1s167.7 MiB [] 31% 1.1s167.7 MiB [] 33% 1.0s167.7 MiB [] 34% 1.0s167.7 MiB [] 35% 1.0s167.7 MiB [] 37% 0.9s167.7 MiB [] 38% 0.9s167.7 MiB [] 39% 0.9s167.7 MiB [] 41% 0.9s167.7 MiB [] 43% 0.8s167.7 MiB [] 44% 0.8s167.7 MiB [] 46% 0.8s167.7 MiB [] 47% 0.7s167.7 MiB [] 49% 0.7s167.7 MiB [] 51% 0.7s167.7 MiB [] 52% 0.6s167.7 MiB [] 54% 0.6s167.7 MiB [] 55% 0.6s167.7 MiB [] 57% 0.6s167.7 MiB [] 58% 0.6s167.7 MiB [] 59% 0.5s167.7 MiB [] 61% 0.5s167.7 MiB [] 62% 0.5s167.7 MiB [] 64% 0.5s167.7 MiB [] 65% 0.4s167.7 MiB [] 66% 0.4s167.7 MiB [] 68% 0.4s167.7 MiB [] 69% 0.4s167.7 MiB [] 70% 0.4s167.7 MiB [] 71% 0.4s167.7 MiB [] 73% 0.4s167.7 MiB [] 74% 0.3s167.7 MiB [] 76% 0.3s167.7 MiB [] 77% 0.3s167.7 MiB [] 79% 0.3s167.7 MiB [] 80% 0.3s167.7 MiB [] 82% 0.2s167.7 MiB [] 83% 0.2s167.7 MiB [] 84% 0.2s167.7 MiB [] 86% 0.2s167.7 MiB [] 87% 0.2s167.7 MiB [] 88% 0.1s167.7 MiB [] 90% 0.1s167.7 MiB [] 91% 0.1s167.7 MiB [] 93% 0.1s167.7 MiB [] 94% 0.1s167.7 MiB [] 96% 0.0s167.7 MiB [] 97% 0.0s167.7 MiB [] 99% 0.0s167.7 MiB [] 100% 0.0s Chromium 136.0.7103.25 (playwright build v1169) downloaded to /root/.cache/ms-playwright/chromium-1169 Downloading FFMPEG playwright build v1011 from https://cdn.playwright.dev/dbazure/download/playwright/builds/ffmpeg/1011/ffmpeg-linux.zip 2.3 MiB [] 0% 0.0s2.3 MiB [] 3% 0.5s2.3 MiB [] 6% 0.5s2.3 MiB [] 15% 0.3s2.3 MiB [] 31% 0.1s2.3 MiB [] 55% 0.1s2.3 MiB [] 100% 0.0s FFMPEG playwright build v1011 downloaded to /root/.cache/ms-playwright/ffmpeg-1011 Downloading Chromium Headless Shell 136.0.7103.25 (playwright build v1169) from https://cdn.playwright.dev/dbazure/download/playwright/builds/chromium/1169/chromium-headless-shell-linux.zip 101.4 MiB [] 0% 0.0s101.4 MiB [] 0% 21.1s101.4 MiB [] 0% 19.0s101.4 MiB [] 0% 13.0s101.4 MiB [] 0% 10.7s101.4 MiB [] 1% 4.8s101.4 MiB [] 3% 2.6s101.4 MiB [] 4% 2.5s101.4 MiB [] 4% 2.8s101.4 MiB [] 5% 2.5s101.4 MiB [] 7% 2.3s101.4 MiB [] 7% 2.5s101.4 MiB [] 7% 2.6s101.4 MiB [] 8% 2.6s101.4 MiB [] 9% 2.4s101.4 MiB [] 10% 2.4s101.4 MiB [] 11% 2.4s101.4 MiB [] 12% 2.3s101.4 MiB [] 15% 1.9s101.4 MiB [] 17% 1.6s101.4 MiB [] 20% 1.4s101.4 MiB [] 23% 1.2s101.4 MiB [] 25% 1.1s101.4 MiB [] 28% 1.0s101.4 MiB [] 31% 0.9s101.4 MiB [] 35% 0.8s101.4 MiB [] 36% 0.8s101.4 MiB [] 38% 0.7s101.4 MiB [] 41% 0.7s101.4 MiB [] 44% 0.6s101.4 MiB [] 46% 0.6s101.4 MiB [] 47% 0.6s101.4 MiB [] 51% 0.5s101.4 MiB [] 54% 0.5s101.4 MiB [] 58% 0.4s101.4 MiB [] 60% 0.4s101.4 MiB [] 62% 0.4s101.4 MiB [] 66% 0.3s101.4 MiB [] 68% 0.3s101.4 MiB [] 71% 0.3s101.4 MiB [] 74% 0.2s101.4 MiB [] 76% 0.2s101.4 MiB [] 79% 0.2s101.4 MiB [] 82% 0.2s101.4 MiB [] 85% 0.1s101.4 MiB [] 87% 0.1s101.4 MiB [] 91% 0.1s101.4 MiB [] 93% 0.1s101.4 MiB [] 96% 0.0s101.4 MiB [] 99% 0.0s101.4 MiB [] 100% 0.0s Chromium Headless Shell 136.0.7103.25 (playwright build v1169) downloaded to /root/.cache/ms-playwright/chromium_headless_shell-1169 ++ echo 'source .venv/bin/activate'
Internet turned off
Bug: 1. Go to main page 2. Switch to Time Series 3. Dive This fails with: Binder Error: No function matches the given name and argument types 'avg(VARCHAR)'. You might need to add explicit type casts. Candidate functions: avg(DECIMAL) -> DECIMAL avg(SMALLINT) -> DOUBLE avg(INTEGER) -> DOUBLE avg(BIGINT) -> DOUBLE avg(HUGEINT) -> DOUBLE avg(DOUBLE) -> DOUBLE LINE 1: ... second' * CAST(avg(epoch(timestamp)) AS BIGINT) AS timestamp, avg(event) AS event, avg(value) AS value, avg(user) AS user... ^ SQL: SELECT TIMESTAMP 'epoch' + INTERVAL '3600 second' * CAST(floor(epoch(timestamp)/3600) AS BIGINT) AS bucket, count(*) AS Hits, bucket, TIMESTAMP 'epoch' + INTERVAL '1 second' * CAST(avg(epoch(timestamp)) AS BIGINT) AS timestamp, avg(event) AS event, avg(value) AS value, avg(user) AS user FROM events GROUP BY bucket ORDER BY timestamp ASC LIMIT 7 Traceback (most recent call last): File "/Users/ezyang/Dev/scubaduck/scubaduck/server.py", line 394, in query rows = con.execute(sql).fetchall() ^^^^^^^^^^^^^^^^ duckdb.duckdb.BinderException: Binder Error: No function matches the given name and argument types 'avg(VARCHAR)'. You might need to add explicit type casts. Candidate functions: avg(DECIMAL) -> DECIMAL avg(SMALLINT) -> DOUBLE avg(INTEGER) -> DOUBLE avg(BIGINT) -> DOUBLE avg(HUGEINT) -> DOUBLE avg(DOUBLE) -> DOUBLE LINE 1: ... second' * CAST(avg(epoch(timestamp)) AS BIGINT) AS timestamp, avg(event) AS event, avg(value) AS value, avg(user) AS user... ^ Add a test for this and then fix it. I'm expecting to see a graph. Also, time columns should be unchecked by default in the Columns field on the time series view.

I’ve just checked AGENTS.md to see the instructions for guidance.

shell
bash: .venv/bin/activate: No such file or directory root@8b10638fd893:/workspace# ls scubaduck
root@8b10638fd893:/workspace# cd scubaduck root@8b10638fd893:/workspace/scubaduck# ls AGENTS.md codex_setup.sh scubaduck tests README.md pyproject.toml stubs uv.lock

I'll check AGENTS.md now to see what instructions there are for me.

shell
root@8b10638fd893:/workspace/scubaduck# cat AGENTS.md - Use "source .venv/bin/activate" to activate the virtual environment before running any commands - ONLY use non-interactive commands like cat, sed, apply_patch to do edits. Do NOT use interactive editors. - Do NOT attempt to install packages. Only the packages specified in pyproject.toml are available. You cannot add new packages. If you desperately want another package, make a note of it in the final PR description. - Use conventional commits to format PR title - There are no nested AGENTS.md files, this is the only agents file - When using Playwright, ONLY use chromium browser. This browser is already installed. - Use "ruff check" to check lint, "ruff format" to autoformat files and "pyright" to typecheck. - When writing the PR description, include the original prompt supplied by the user. - When you add functionality to the server, add server tests to tests/test_server.py. When you add features to the frontend, add frontend tests to tests/test_web.py

I'll check the root README for any helpful hints or instructions.

shell
root@8b10638fd893:/workspace/scubaduck# cat README.md | head -n 20 I really like Scuba (Meta's internal real-time database system). The distributed , real-time database part of Scuba is quite difficult (and expensive) to replica te, but I also really like Scuba's UI for doing queries, and I have found myself wishing that I have access to it even for "small" databases, e.g., I have a sql ite dataset I want to explore. Pivotal ideas: * Time series by default. In the dedicated "time series" view, there are many fe atures specifically oriented towards working towards tables that represent event s that occurred over time: the start, end, compare, aggregate and granularity fi elds all specially privilege the timestamp field. In fact, you can't log events to Scuba's backing data store without a timestamp, they always come with one. (S cuba also supports other views that don't presuppose a time series, but the time series is the most beloved and well used view.) This is in contrast to typical software which tries to generalize to arbitrary data first, with time series bei ng added on later. * It's all about exploration. Scuba is predicated on the idea that you don't kno w what you're looking for, that you are going to spend time tweaking queries and changing filters/grouping as part of an investigation to figure out why a syste m behaves the way it is. So the filters/comparisons/groupings you want to edit a re always visible on the left sidebar, with the expectation that you're going to tweak the query to look at something else. Similarly, all the parameters of you r query get saved into your URL, so your browser history can double up as a quer y history / you can easily share a query with someone else. This is contrast to typical software which is often oriented to making pretty dashboards and reports . (This function is important too, but it's not what I want in exploration mode! ) * You can fix data problems in the query editor. It's pretty common to have mess ed up and ended up with a database that doesn't have exactly the columns you nee d, or some columns that are corrupted in some way. Scuba has pretty robust suppo rt for defining custom columns with arbitrary SQL functions, grouping over them as if they were native functions, and doing so with minimal runtime cost (Scuba aims to turn around your query in milliseconds!) Having to go and run a huge dat a pipeline to fix your data is a big impediment to exploration; quick and easy c ustom columns means you can patch over problems when you're investigating and fi x them for real later. We're going to build a exploratory data analysis tool like Scuba for time series database (i.e., a database with a mandatory timestamp representing the time an event occurred). We'll use DuckDB as the underlying SQL engine served from a Py thon server, and render the GUI/results as a webpage with vanilla HTML and JS. W e'll use choices.js to support token inputs. We define a token input to mean a text input element where as you type a dropdown displays with valid values, and if you select one or press enter, the selection turns into a token/chip that can only be deleted as one unit. To start, we are going to support one views: samples. The samples view only all ows you to view individual samples from the database, subject to a filter. Our m ain UI concept is that there is a left sidebar that is the query editor, and the right side that shows the view. The sidebar is always visible and defaults to the query parameters of the current view. After you make changes to the query, clicking the "Dive" button updates the view. The URL of the page encodes all of the values of the query (and gets updated when you Dive), so the browser's back button lets you view previous queries. The query editor's job is to generate a SQL query, which then is applied on the database, and then the result visualized according to the view. Here are the settings you can apply to the query. The help text should show up w hen you mouse over the field name: * Start/End - Help text: "Sets the start/end of the time range to query. Can be any kind of datetime string. For example: 'April 23, 2014' or 'yesterday'." The UI for this selector supports both relative selections (now, -1 hour, -3 hours, -12 hours, -1 day, -3 days, -1 week, -1 fortnight, -30 days, -90 days) as well a s specifying an absolute date. The way this field is rendered is there is a fre e form text box, a drop down arrow (for the relative selectors), and then a cale ndar button (for date selection). * Order By - Help text: "Choose a column to sort results by." There is an ASC/D ESC toggle next to it.

The README is a bit lengthy, but it’s fine. I’ll check for more instructions.

shell
root@8b10638fd893:/workspace/scubaduck# sed -n '1,80p' AGENTS.md - Use "source .venv/bin/activate" to activate the virtual environment before running any commands - ONLY use non-interactive commands like cat, sed, apply_patch to do edits. Do NOT use interactive editors. - Do NOT attempt to install packages. Only the packages specified in pyproject.toml are available. You cannot add new packages. If you desperately want another package, make a note of it in the final PR description. - Use conventional commits to format PR title - There are no nested AGENTS.md files, this is the only agents file - When using Playwright, ONLY use chromium browser. This browser is already installed. - Use "ruff check" to check lint, "ruff format" to autoformat files and "pyright" to typecheck. - When writing the PR description, include the original prompt supplied by the user. - When you add functionality to the server, add server tests to tests/test_server.py. When you add features to the frontend, add frontend tests to tests/test_web.py

I'll activate the virtual environment and check which files are present with 'ls'.

shell
root@8b10638fd893:/workspace/scubaduck# ls -a . .git .gitignore AGENTS.md codex_setup.sh scubaduck tests .. .github .venv README.md pyproject.toml stubs uv.lock
root@8b10638fd893:/workspace/scubaduck# source .venv/bin/activate (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll run ruff check, ruff format, and pyright to ensure everything's in order.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# ruff check >/tmp/ruff_check. txt && tail -n 20 /tmp/ruff_check.txt All checks passed!
(scubaduck) root@8b10638fd893:/workspace/scubaduck# ruff format >/tmp/ruff_forma t.txt && tail -n 20 /tmp/ruff_format.txt 6 files left unchanged
(scubaduck) root@8b10638fd893:/workspace/scubaduck# pyright >/tmp/pyright.txt && tail -n 20 /tmp/pyright.txt
0 errors, 0 warnings, 0 informations (scubaduck) root@8b10638fd893:/workspace/scubaduck#

Time to run the tests and see how everything holds up!

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# pytest -q >/tmp/pytest.txt & & tail -n 20 /tmp/pytest.txt





bringing up nodes... bringing up nodes... ........................................................ [100%] 56 passed in 9.43s
(scubaduck) root@8b10638fd893:/workspace/scubaduck# tail -n 20 /tmp/pytest.txt bringing up nodes... bringing up nodes... ........................................................ [100%] 56 passed in 9.43s (scubaduck) root@8b10638fd893:/workspace/scubaduck#

Time Series view fails due to a query issue with string columns. I'll inspect the server code.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# ls scubaduck __init__.py __pycache__ sample.csv server.py static
(scubaduck) root@8b10638fd893:/workspace/scubaduck# sed -n '350,460p' scubaduck/ server.py elif agg == "avg" or agg in {"min", "max"}: need_numeric = False allow_time = True else: need_numeric = False allow_time = False if need_numeric or allow_time: for c in params.columns: if c in params.group_by or c == params.x_axis: continue ctype = column_types.get(c, "").upper() is_numeric = any( t in ctype for t in [ "INT", "DECIMAL", "REAL", "DOUBLE", "FLOAT", "NUMERIC", "HUGEINT", ] ) is_time = "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype if need_numeric and not is_numeric: return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) if allow_time and not (is_numeric or is_time): return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) sql = build_query(params, column_types) try: rows = con.execute(sql).fetchall() except Exception as exc: tb = traceback.format_exc() print(f"Query failed:\n{sql}\n{tb}") return ( jsonify({"sql": sql, "error": str(exc), "traceback": tb}), 400, ) return jsonify({"sql": sql, "rows": rows}) return app app = create_app() if __name__ == "__main__": app.run(debug=True) (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll look for the build_query function now!

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# grep -n "build_query" -n scu baduck/server.py 138:def build_query(params: QueryParams, column_types: Dict[str, str] | None = N one) -> str: 392: sql = build_query(params, column_types)
(scubaduck) root@8b10638fd893:/workspace/scubaduck# sed -n '138,270p' scubaduck/ server.py def build_query(params: QueryParams, column_types: Dict[str, str] | None = None) -> str: select_parts: list[str] = [] group_cols = params.group_by[:] if params.graph_type == "timeseries": sec = _granularity_seconds(params.granularity, params.start, params.end) x_axis = params.x_axis or "timestamp" bucket_expr = ( f"TIMESTAMP 'epoch' + INTERVAL '{sec} second' * " f"CAST(floor(epoch({x_axis})/{sec}) AS BIGINT)" ) select_parts.append(f"{bucket_expr} AS bucket") group_cols = ["bucket"] + group_cols has_agg = bool(group_cols) or params.aggregate is not None if has_agg: select_parts.extend(group_cols) agg = (params.aggregate or "avg").lower() def agg_expr(col: str) -> str: if agg.startswith("p"): quant = float(agg[1:]) / 100 return f"quantile({col}, {quant})" if agg == "count distinct": return f"count(DISTINCT {col})" if agg == "avg" and column_types is not None: ctype = column_types.get(col, "").upper() if "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype: return ( "TIMESTAMP 'epoch' + INTERVAL '1 second' * " f"CAST(avg(epoch({col})) AS BIGINT)" ) return f"{agg}({col})" for col in params.columns: if col in group_cols: continue select_parts.append(f"{agg_expr(col)} AS {col}") if params.show_hits: select_parts.insert(len(group_cols), "count(*) AS Hits") else: select_parts.extend(params.columns) for name, expr in params.derived_columns.items(): select_parts.append(f"{expr} AS {name}") select_clause = ", ".join(select_parts) if select_parts else "*" query = f"SELECT {select_clause} FROM events" where_parts: list[str] = [] if params.start: where_parts.append(f"timestamp >= '{params.start}'") if params.end: where_parts.append(f"timestamp <= '{params.end}'") for f in params.filters: op = f.op if op in {"empty", "!empty"}: val = "''" else: if f.value is None: continue if isinstance(f.value, list): if not f.value: continue if op == "=": vals = " OR ".join(f"{f.column} = '{v}'" for v in f.value) where_parts.append(f"({vals})") continue val = f"'{f.value}'" if isinstance(f.value, str) else str(f.value) if op == "contains": where_parts.append(f"{f.column} ILIKE '%' || {val} || '%'") elif op == "!contains": where_parts.append(f"{f.column} NOT ILIKE '%' || {val} || '%'") elif op == "empty": where_parts.append(f"{f.column} = {val}") elif op == "!empty": where_parts.append(f"{f.column} != {val}") else: where_parts.append(f"{f.column} {op} {val}") if where_parts: query += " WHERE " + " AND ".join(where_parts) if group_cols: query += " GROUP BY " + ", ".join(group_cols) if params.order_by: query += f" ORDER BY {params.order_by} {params.order_dir}" if params.limit is not None: query += f" LIMIT {params.limit}" return query def create_app(db_file: str | Path | None = None) -> Flask: app = Flask(__name__, static_folder="static") db_path = Path(db_file or Path(__file__).with_name("sample.csv")).resolve() con = _load_database(db_path) column_types: Dict[str, str] = { r[1]: r[2] for r in con.execute("PRAGMA table_info(events)").fetchall() } sample_cache: Dict[Tuple[str, str], Tuple[List[str], float]] = {} CACHE_TTL = 60.0 CACHE_LIMIT = 200 @app.route("/") def index() -> Any: # pyright: ignore[reportUnusedFunction] assert app.static_folder is not None return send_from_directory(app.static_folder, "index.html") @app.route("/api/columns") def columns() -> Any: # pyright: ignore[reportUnusedFunction] rows = con.execute("PRAGMA table_info(events)").fetchall() return jsonify([{"name": r[1], "type": r[2]} for r in rows]) def _cache_get(key: Tuple[str, str]) -> List[str] | None: item = sample_cache.get(key) if item is None: return None vals, ts = item if time.time() - ts > CACHE_TTL: del sample_cache[key] return None sample_cache[key] = (vals, time.time()) return vals def _cache_set(key: Tuple[str, str], vals: List[str]) -> None: sample_cache[key] = (vals, time.time()) if len(sample_cache) > CACHE_LIMIT: oldest = min(sample_cache.items(), key=lambda kv: kv[1][1])[0] del sample_cache[oldest] @app.route("/api/samples") def sample_values() -> Any: # pyright: ignore[reportUnusedFunction] column = request.args.get("column") substr = request.args.get("q", "") if not column or column not in column_types: return jsonify([]) ctype = column_types[column].upper() if "CHAR" not in ctype and "STRING" not in ctype and "VARCHAR" not in ct ype: (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I’ll keep scrolling to the end to check for any remaining functions.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# sed -n '270,360p' scubaduck/ server.py if "CHAR" not in ctype and "STRING" not in ctype and "VARCHAR" not in ct ype: return jsonify([]) key = (column, substr) cached = _cache_get(key) if cached is not None: return jsonify(cached) rows = con.execute( f"SELECT DISTINCT {column} FROM events WHERE CAST({column} AS VARCHA R) ILIKE '%' || ? || '%' LIMIT 20", [substr], ).fetchall() values = [r[0] for r in rows] _cache_set(key, values) return jsonify(values) @app.route("/api/query", methods=["POST"]) def query() -> Any: # pyright: ignore[reportUnusedFunction] payload = request.get_json(force=True) try: start = parse_time(payload.get("start")) end = parse_time(payload.get("end")) except Exception as exc: return jsonify({"error": str(exc)}), 400 params = QueryParams( start=start, end=end, order_by=payload.get("order_by"), order_dir=payload.get("order_dir", "ASC"), limit=payload.get("limit"), columns=payload.get("columns", []), derived_columns=payload.get("derived_columns", {}), graph_type=payload.get("graph_type", "samples"), group_by=payload.get("group_by", []), aggregate=payload.get("aggregate"), show_hits=payload.get("show_hits", False), x_axis=payload.get("x_axis"), granularity=payload.get("granularity", "Auto"), fill=payload.get("fill", "0"), ) for f in payload.get("filters", []): params.filters.append(Filter(f["column"], f["op"], f.get("value"))) if params.graph_type not in {"table", "timeseries"} and ( params.group_by or params.aggregate or params.show_hits ): return ( jsonify( { "error": "group_by, aggregate and show_hits are only val id for table or timeseries view" } ), 400, ) valid_cols = set(column_types.keys()) if params.graph_type == "timeseries": if params.x_axis is None: for cand in ["time", "timestamp"]: if cand in valid_cols: params.x_axis = cand break if params.x_axis is None or params.x_axis not in valid_cols: return jsonify({"error": "Invalid x_axis"}), 400 ctype = column_types.get(params.x_axis, "").upper() if not any(t in ctype for t in ["TIMESTAMP", "DATE", "TIME"]): return jsonify({"error": "x_axis must be a time column"}), 400 for col in params.columns: if col not in valid_cols: return jsonify({"error": f"Unknown column: {col}"}), 400 for col in params.group_by: if col not in valid_cols: return jsonify({"error": f"Unknown column: {col}"}), 400 if params.order_by and params.order_by not in valid_cols: return jsonify({"error": f"Unknown column: {params.order_by}"}), 400 if params.group_by: agg = (params.aggregate or "avg").lower() if agg.startswith("p") or agg == "sum": need_numeric = True allow_time = False elif agg == "avg" or agg in {"min", "max"}: need_numeric = False allow_time = True else: need_numeric = False allow_time = False if need_numeric or allow_time: for c in params.columns: if c in params.group_by or c == params.x_axis: continue ctype = column_types.get(c, "").upper()
(scubaduck) root@8b10638fd893:/workspace/scubaduck# sed -n '360,460p' scubaduck/ server.py ctype = column_types.get(c, "").upper() is_numeric = any( t in ctype for t in [ "INT", "DECIMAL", "REAL", "DOUBLE", "FLOAT", "NUMERIC", "HUGEINT", ] ) is_time = "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype if need_numeric and not is_numeric: return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) if allow_time and not (is_numeric or is_time): return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) sql = build_query(params, column_types) try: rows = con.execute(sql).fetchall() except Exception as exc: tb = traceback.format_exc() print(f"Query failed:\n{sql}\n{tb}") return ( jsonify({"sql": sql, "error": str(exc), "traceback": tb}), 400, ) return jsonify({"sql": sql, "rows": rows}) return app app = create_app() if __name__ == "__main__": app.run(debug=True) (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I’m reviewing the timeseries query logic and checking if there’s a missing group_by.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# grep -n "QueryParams" -n scu baduck/server.py 27:class QueryParams: 138:def build_query(params: QueryParams, column_types: Dict[str, str] | None = N one) -> str: 293: params = QueryParams(
(scubaduck) root@8b10638fd893:/workspace/scubaduck# sed -n '20,60p' scubaduck/se rver.py class Filter: column: str op: str value: str | int | float | list[str] | None @dataclass class QueryParams: start: str | None = None end: str | None = None order_by: str | None = None order_dir: str = "ASC" limit: int | None = None columns: list[str] = field(default_factory=lambda: []) filters: list[Filter] = field(default_factory=lambda: []) derived_columns: dict[str, str] = field(default_factory=lambda: {}) graph_type: str = "samples" group_by: list[str] = field(default_factory=lambda: []) aggregate: str | None = None show_hits: bool = False x_axis: str | None = None granularity: str = "Auto" fill: str = "0" def _load_database(path: Path) -> duckdb.DuckDBPyConnection: ext = path.suffix.lower() if ext == ".csv": con = duckdb.connect() con.execute( f"CREATE TABLE events AS SELECT * FROM read_csv_auto('{path.as_posix ()}')" ) elif ext in {".db", ".sqlite"}: con = duckdb.connect() sconn = sqlite3.connect(path) info = sconn.execute("PRAGMA table_info(events)").fetchall() col_defs = ", ".join(f"{r[1]} {r[2]}" for r in info) con.execute(f"CREATE TABLE events ({col_defs})") placeholders = ",".join("?" for _ in info) for row in sconn.execute("SELECT * FROM events"): con.execute(f"INSERT INTO events VALUES ({placeholders})", row) (scubaduck) root@8b10638fd893:/workspace/scubaduck#

The issue arises when 'avg' is applied to string columns, causing a binder error.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# ls scubaduck/static index.html
(scubaduck) root@8b10638fd893:/workspace/scubaduck# grep -n "Time Series" -n scu baduck/static/index.html 114: <div id="header">sample.csv - events <select id="graph_type"><option value ="samples">Samples</option><option value="table">Table</option><option value="ti meseries">Time Series</option></select></div>
(scubaduck) root@8b10638fd893:/workspace/scubaduck# sed -n '100,260p' scubaduck/ static/index.html } .col-group-header { overflow: hidden; } .col-group-header .links { float: right; } .col-group-header .links a { margin-left: 5px; } /* Column resizer removed */ </style> </head> <body> <div id="header">sample.csv - events <select id="graph_type"><option value="sa mples">Samples</option><option value="table">Table</option><option value="timese ries">Time Series</option></select></div> <div id="content"> <div id="sidebar"> <div id="tabs"> <button class="tab active" data-tab="settings">View Settings</button> <button class="tab" data-tab="columns">Columns</button> <button id="dive" onclick="dive()">Dive</button> </div> <div id="settings" class="tab-content active"> <div class="field"> <label>Start<span class="help" title="Sets the start/end of the time r ange to query. Can be any kind of datetime string. For example: 'April 23, 2014' or 'yesterday'.">[?]</span></label> <div class="rel-box"> <input id="start" type="text" /> <button type="button" class="rel-btn" data-target="start-select">&#9 660;</button> <div id="start-select" class="rel-dropdown" data-input="start"> <div data-value="-1 hour">-1 hour</div> <div data-value="-3 hours">-3 hours</div> <div data-value="-12 hours">-12 hours</div> <div data-value="-1 day">-1 day</div> <div data-value="-3 days">-3 days</div> <div data-value="-1 week">-1 week</div> <div data-value="-1 fortnight">-1 fortnight</div> <div data-value="-30 days">-30 days</div> <div data-value="-90 days">-90 days</div> </div> </div> </div> <div class="field"> <label>End<span class="help" title="Sets the start/end of the time ran ge to query. Can be any kind of datetime string. For example: 'April 23, 2014' o r 'yesterday'.">[?]</span></label> <div class="rel-box"> <input id="end" type="text" /> <button type="button" class="rel-btn" data-target="end-select">&#966 0;</button> <div id="end-select" class="rel-dropdown" data-input="end"> <div data-value="now">now</div> <div data-value="-1 hour">-1 hour</div> <div data-value="-3 hours">-3 hours</div> <div data-value="-12 hours">-12 hours</div> <div data-value="-1 day">-1 day</div> <div data-value="-3 days">-3 days</div> <div data-value="-1 week">-1 week</div> <div data-value="-1 fortnight">-1 fortnight</div> <div data-value="-30 days">-30 days</div> <div data-value="-90 days">-90 days</div> </div> </div> </div> <div class="field"> <label>Order By<span class="help" title="Choose a column to sort resul ts by.">[?]</span></label> <select id="order_by"></select> <button id="order_dir" type="button">ASC \u25B2</button> </div> <div class="field"> <label>Limit<span class="help" title="Choose the maximum number of res ults to show in the chart after any aggregations have been applied. For example, a limit of 10 will show no more than 10 rows for a table, etc.">[?]</span></lab el> <input id="limit" type="number" value="100" /> </div> <div id="x_axis_field" class="field" style="display:none;"> <label>X-axis</label> <select id="x_axis"></select> </div> <div id="granularity_field" class="field" style="display:none;"> <label>Granularity</label> <select id="granularity"> <option>Auto</option> <option>Fine</option> <option>1 second</option> <option>5 seconds</option> <option>10 seconds</option> <option>30 seconds</option> <option>1 minute</option> <option>4 minutes</option> <option>5 minutes</option> <option>10 minutes</option> <option>15 minutes</option> <option>30 minutes</option> <option>1 hour</option> <option>3 hours</option> <option>6 hours</option> <option>1 day</option> <option>1 week</option> <option>30 days</option> </select> </div> <div id="fill_field" class="field" style="display:none;"> <label>Fill Missing Buckets</label> <select id="fill"> <option value="0">Fill with 0 (Per Series)</option> <option value="connect">Connect (Per Series)</option> <option value="blank">Leave blank</option> </select> </div> <div id="group_by_field" class="field" style="display:none;"> <label>Group By</label> <div class="chip-box"> <div class="chip-input"> <input id="group_by" class="f-val" type="text"> <button type="button" class="chip-copy">&#x2398;</button> </div> <div class="chip-dropdown"></div> </div> </div> <div id="aggregate_field" class="field" style="display:none;"> <label>Aggregate</label> <select id="aggregate"> <option>Avg</option> <option>Count</option> <option>Sum</option> <option>Min</option> <option>Max</option> <option>Count Distinct</option> <option>p5</option> <option>p25</option> <option>p50</option> <option>p70</option> <option>p75</option> <option>p90</option> <option>p95</option> <option>p99</option> <option>p99.9</option> <option>p99.99</option> </select> </div> <div id="show_hits_field" class="field" style="display:none;"> <label>Show Hits</label> <input id="show_hits" type="checkbox" checked> </div> <div id="filters"> <h4>Filters<span class="help" title="You can create as many filters as you want. You can either write a filter using a UI or manual SQL. In the UI, fi lter consists of a column name, a relation (e.g., =, !=, <, >) and then a text f ield. The text field is a token input. It accepts multiple tokens for = relation , in which case we match using an OR for all options.">[?]</span></h4> <div id="filter_list"></div> <button id="add_filter" type="button" onclick="addFilter()">Add Filter </button> </div> <div id="query_info" style="margin-top:10px;"></div> </div> <div id="columns" class="tab-content"> <div id="column_actions"> <a id="columns_all" href="#">All</a> <a id="columns_none" href="#">None</a> </div> <div id="column_groups"></div> </div> </div> <div id="sidebar-resizer"></div> <div id="view"> <table id="results"></table> </div> </div> <script> const allColumns = []; (scubaduck) root@8b10638fd893:/workspace/scubaduck#

Scrolling to reveal the JavaScript code just after the HTML section.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# sed -n '260,520p' scubaduck/ static/index.html const allColumns = []; const columnTypes = {}; const stringColumns = []; const integerColumns = []; const timeColumns = []; let selectedColumns = []; let displayType = 'samples'; let groupBy = {chips: [], addChip: () => {}, renderChips: () => {}}; function initDropdown(select) { const wrapper = document.createElement('div'); wrapper.className = 'dropdown'; if (select.classList.contains('f-col')) { wrapper.classList.add('f-col'); } select.parentNode.insertBefore(wrapper, select); wrapper.appendChild(select); select.style.display = 'none'; const disp = document.createElement('div'); disp.className = 'dropdown-display'; function updateDisplay() { const opt = select.options[select.selectedIndex]; disp.textContent = opt ? opt.textContent : ''; } updateDisplay(); wrapper.appendChild(disp); const menu = document.createElement('div'); menu.className = 'dropdown-menu'; const search = document.createElement('input'); search.placeholder = 'Search'; menu.appendChild(search); const list = document.createElement('div'); menu.appendChild(list); wrapper.appendChild(menu); function close() { menu.style.display = 'none'; } function open() { renderOptions(); menu.style.display = 'block'; search.focus(); } disp.addEventListener('click', () => { if (menu.style.display === 'block') { close(); } else { open(); } }); document.addEventListener('click', e => { if (!wrapper.contains(e.target)) { close(); } }); function renderOptions() { const q = search.value.toLowerCase(); list.innerHTML = ''; Array.from(select.options).forEach(o => { if (!o.textContent.toLowerCase().includes(q)) return; const div = document.createElement('div'); div.className = 'option'; if (q) { const text = o.textContent; const idx = text.toLowerCase().indexOf(q); if (idx !== -1) { div.innerHTML = text.slice(0, idx) + '<u>' + text.slice(idx, idx + q.length) + '</u>' + text.slice(idx + q.length); } else { div.textContent = text; } } else { div.textContent = o.textContent; } if (o.value === select.value) div.classList.add('selected'); div.addEventListener('mousedown', evt => { evt.preventDefault(); select.value = o.value; select.dispatchEvent(new Event('change')); updateDisplay(); close(); }); list.appendChild(div); }); } search.addEventListener('input', renderOptions); select.addEventListener('change', updateDisplay); } // Sidebar resizing const sidebar = document.getElementById('sidebar'); const sidebarResizer = document.getElementById('sidebar-resizer'); let sidebarWidth = parseInt(localStorage.getItem('sidebarWidth') || 450, 10); sidebar.style.width = sidebarWidth + 'px'; let sidebarResize = false; function startSidebarDrag(e) { e.preventDefault(); sidebarResize = true; document.addEventListener('mousemove', onSidebarDrag); document.addEventListener('mouseup', stopSidebarDrag); } function onSidebarDrag(e) { if (!sidebarResize) return; sidebarWidth = Math.max(200, e.clientX - sidebar.getBoundingClientRect().left) ; sidebar.style.width = sidebarWidth + 'px'; } function stopSidebarDrag() { document.removeEventListener('mousemove', onSidebarDrag); document.removeEventListener('mouseup', stopSidebarDrag); sidebarResize = false; localStorage.setItem('sidebarWidth', sidebarWidth); } sidebarResizer.addEventListener('mousedown', startSidebarDrag); ... if (g.querySelector('.col-group-header').textContent.startsWith('Strings')) { g.style.display = showTable || showTS ? 'none' : ''; } }); if (showTS) { const lim = document.getElementById('limit'); if (!lim.dataset.setByUser) { lim.value = '7'; } } displayType = graphTypeSel.value; } orderDirBtn.addEventListener('click', () => { orderDir = orderDir === 'ASC' ? 'DESC' : 'ASC'; updateOrderDirButton(); }); updateOrderDirButton(); graphTypeSel.addEventListener('change', updateDisplayTypeUI); fetch('/api/columns').then(r => r.json()).then(cols => { const orderSelect = document.getElementById('order_by'); const xAxisSelect = document.getElementById('x_axis'); const groupsEl = document.getElementById('column_groups'); const groups = { time: {name: 'Time', cols: [], ul: null}, integer: {name: 'Integers', cols: [], ul: null}, string: {name: 'Strings', cols: [], ul: null} }; cols.forEach(c => { const t = c.type.toUpperCase(); columnTypes[c.name] = c.type; allColumns.push(c.name); let g = 'string'; if (t.includes('INT')) g = 'integer'; if (t.includes('TIMESTAMP')) { g = 'time'; timeColumns.push(c.name); } groups[g].cols.push(c.name); if (g !== 'string') { const o = document.createElement('option'); o.value = c.name; o.textContent = c.name; orderSelect.appendChild(o); } }); timeColumns.forEach(name => { const o = document.createElement('option'); o.value = name; o.textContent = name; xAxisSelect.appendChild(o); }); Object.keys(groups).forEach(key => { const g = groups[key]; const div = document.createElement('div'); div.className = 'col-group'; const header = document.createElement('div'); header.className = 'col-group-header'; header.appendChild(document.createTextNode(g.name + ': ')); const links = document.createElement('span'); links.className = 'links'; const allBtn = document.createElement('a'); allBtn.href = '#'; allBtn.textContent = 'All'; const noneBtn = document.createElement('a'); noneBtn.href = '#'; noneBtn.textContent = 'None'; links.appendChild(allBtn); links.appendChild(noneBtn); header.appendChild(links); div.appendChild(header); const ul = document.createElement('ul'); g.ul = ul; g.cols.forEach(name => { const li = document.createElement('li'); const label = document.createElement('label'); const cb = document.createElement('input'); cb.type = 'checkbox'; cb.value = name; cb.checked = true; cb.addEventListener('change', updateSelectedColumns); label.appendChild(cb); label.appendChild(document.createTextNode(' ' + name)); li.appendChild(label); ul.appendChild(li); }); allBtn.addEventListener('click', e => { e.preventDefault(); ul.querySelectorAll('input').forEach(cb => (cb.checked = true)); updateSelectedColumns(); }); noneBtn.addEventListener('click', e => { e.preventDefault(); ul.querySelectorAll('input').forEach(cb => (cb.checked = false)); updateSelectedColumns(); }); div.appendChild(ul); groupsEl.appendChild(div); }); document.getElementById('columns_all').addEventListener('click', e => { e.preventDefault(); groupsEl.querySelectorAll('input').forEach(cb => (cb.checked = true)); updateSelectedColumns(); }); document.getElementById('columns_none').addEventListener('click', e => { e.preventDefault(); groupsEl.querySelectorAll('input').forEach(cb => (cb.checked = false)); updateSelectedColumns(); }); updateSelectedColumns(); groupBy = document.getElementById('group_by').closest('.field'); initChipInput(groupBy, typed => allColumns.filter(c => c.toLowerCase().includes(typed.toLowerCase())) ); initDropdown(orderSelect); initDropdown(document.getElementById('aggregate')); document.getElementById('limit').addEventListener('input', e => { e.target.dataset.setByUser = '1'; }); updateDisplayTypeUI(); addFilter(); initFromUrl(); }); (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll keep going and open the remaining lines after line 520.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# sed -n '520,780p' scubaduck/ static/index.html document.querySelectorAll('#tabs .tab').forEach(btn => { btn.addEventListener('click', () => { document.querySelectorAll('#tabs .tab').forEach(t => t.classList.remove('act ive')); document.querySelectorAll('.tab-content').forEach(c => c.classList.remove('a ctive')); btn.classList.add('active'); document.getElementById(btn.dataset.tab).classList.add('active'); }); }); document.querySelectorAll('.rel-btn').forEach(btn => { btn.addEventListener('click', () => { const dd = document.getElementById(btn.dataset.target); const show = dd.style.display === 'none' || dd.style.display === ''; document.querySelectorAll('.rel-dropdown').forEach(d => (d.style.display = ' none')); dd.style.display = show ? 'block' : 'none'; }); }); document.querySelectorAll('.rel-dropdown div').forEach(opt => { opt.addEventListener('click', () => { const box = opt.closest('.rel-box'); const input = box.querySelector('input'); input.value = opt.dataset.value || opt.textContent; opt.parentElement.style.display = 'none'; }); }); document.addEventListener('click', e => { document.querySelectorAll('.rel-dropdown').forEach(dd => { if (!dd.parentElement.contains(e.target)) dd.style.display = 'none'; }); }); function updateSelectedColumns() { const base = allColumns.filter(name => { const cb = document.querySelector(`#column_groups input[value="${name}"]`); if (!cb || !cb.checked) return false; if (graphTypeSel.value === 'table' && isStringColumn(name)) return false; return true; }); if (graphTypeSel.value === 'table' || graphTypeSel.value === 'timeseries') { selectedColumns = groupBy.chips.slice(); if (document.getElementById('show_hits').checked) selectedColumns.push('Hits '); base.forEach(c => { if (!selectedColumns.includes(c)) selectedColumns.push(c); }); } else { selectedColumns = base; } } function isStringColumn(name) { const t = (columnTypes[name] || '').toUpperCase(); return t.includes('CHAR') || t.includes('STRING') || t.includes('VARCHAR'); } function isIntegerColumn(name) { const t = (columnTypes[name] || '').toUpperCase(); return t.includes('INT'); } function isTimeColumn(name) { const t = (columnTypes[name] || '').toUpperCase(); return t.includes('TIMESTAMP'); } function formatNumber(val) { if (typeof val !== 'number') val = Number(val); if (Number.isNaN(val)) return ''; if (val === 0) return '0'; const abs = Math.abs(val); if (abs > 999.999) { const units = [ {n: 1e12, s: 'T'}, {n: 1e9, s: 'B'}, {n: 1e6, s: 'M'}, {n: 1e3, s: 'K'}, ]; for (const u of units) { if (abs >= u.n) { return (val / u.n).toFixed(2) + ' ' + u.s; } } } if (abs < 0.0005) return '0.000'; return val.toFixed(3); } function initChipInput(filter, fetchOptions) { const input = filter.querySelector('.f-val'); const chipsEl = filter.querySelector('.chip-input'); const dropdown = filter.querySelector('.chip-dropdown'); const copyBtn = filter.querySelector('.chip-copy'); filter.chips = []; filter.renderChips = renderChips; filter.addChip = addChip; let highlight = 0; let dropdownLocked = false; chipsEl.addEventListener('click', () => { input.focus(); }); function renderChips() { chipsEl.querySelectorAll('.chip').forEach(c => c.remove()); filter.chips.forEach((v, i) => { const span = document.createElement('span'); span.className = 'chip'; span.textContent = v; const x = document.createElement('span'); x.className = 'x'; x.textContent = '✖'; x.addEventListener('click', e => { e.stopPropagation(); filter.chips.splice(i, 1); renderChips(); input.focus(); }); span.appendChild(x); ... function addChip(val) { if (!val) return; const i = filter.chips.indexOf(val); if (i !== -1) { filter.chips.splice(i, 1); } else { filter.chips.push(val); } input.value = ''; renderChips(); } copyBtn.addEventListener('click', () => { navigator.clipboard && navigator.clipboard.writeText(filter.chips.join(',')) ; }); input.addEventListener('paste', e => { e.preventDefault(); const text = e.clipboardData.getData('text'); if (e.shiftKey) { addChip(text.trim()); } else { text.split(',').forEach(t => addChip(t.trim())); } hideDropdown(); }); input.addEventListener('keydown', e => { if (e.key === 'ArrowDown') { if (dropdown.style.display !== 'none') { highlight = Math.min(highlight + 1, dropdown.children.length - 1); updateHighlight(); } e.preventDefault(); } else if (e.key === 'ArrowUp') { if (dropdown.style.display !== 'none') { highlight = Math.max(highlight - 1, 0); updateHighlight(); } e.preventDefault(); } else if (e.key === 'Backspace' && input.value === '') { if (filter.chips.length > 0) { filter.chips.pop(); renderChips(); } } else if (e.key === 'Enter') { if (dropdown.style.display !== 'none' && dropdown.children.length > 0) { const val = dropdown.children[highlight].dataset.value; if (val !== input.value.trim()) { addChip(val); } else { addChip(input.value.trim()); } } else { addChip(input.value.trim()); } hideDropdown(); e.preventDefault(); } }); function renderDropdown(vals) { dropdown.innerHTML = ''; const typed = input.value.trim(); if (typed) { vals.splice(1, 0, typed); } vals.forEach((v, i) => { const d = document.createElement('div'); d.textContent = v; d.dataset.value = v; d.addEventListener('mouseover', () => { highlight = i; updateHighlight(); }); d.addEventListener('mousedown', evt => { evt.preventDefault(); addChip(v); hideDropdown(); input.blur(); }); dropdown.appendChild(d); }); if (vals.length) { highlight = 0; updateHighlight(); showDropdown(); } else { hideDropdown(); } } function loadOptions() { dropdownLocked = false; if (!fetchOptions) { dropdown.innerHTML = ''; return; } Promise.resolve(fetchOptions(input.value, filter)).then(values => { renderDropdown(Array.isArray(values) ? values : []); }); } input.addEventListener('focus', loadOptions); input.addEventListener('input', loadOptions); document.addEventListener('click', evt => { if (evt.target !== input) { hideDropdown(); } }); } function addFilter() { const container = document.createElement('div'); container.className = 'filter'; container.innerHTML = ` <div class="filter-row"> <select class="f-col"></select> <select class="f-op"></select> <button type="button" class="remove" onclick="this.closest('.filter').remo ve()">✖</button> </div> (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll check the timeseries logic, focusing on groupby and time aggregation in the code.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# grep -n "timeseries" -n scub aduck/static/index.html | head 114: <div id="header">sample.csv - events <select id="graph_type"><option value ="samples">Samples</option><option value="table">Table</option><option value="ti meseries">Time Series</option></select></div> 390: const showTS = graphTypeSel.value === 'timeseries'; 559: if (graphTypeSel.value === 'table' || graphTypeSel.value === 'timeseries') { 886: if (graphTypeSel.value === 'table' || graphTypeSel.value === 'timeseries') { 891: if (graphTypeSel.value === 'timeseries') { 909: if (params.graph_type === 'table' || params.graph_type === 'timeseries') { 914: if (params.graph_type === 'timeseries') { 1158: if (graphTypeSel.value === 'timeseries') {
(scubaduck) root@8b10638fd893:/workspace/scubaduck# sed -n '870,930p' scubaduck/ static/index.html order_by: document.getElementById('order_by').value, order_dir: orderDir, limit: parseInt(document.getElementById('limit').value, 10), columns: selectedColumns.filter(c => c !== 'Hits'), graph_type: graphTypeSel.value, filters: Array.from(document.querySelectorAll('#filters .filter')).map(f => { const chips = f.chips || []; const op = f.querySelector('.f-op').value; let value = null; if (op !== 'empty' && op !== '!empty') { value = chips.length === 0 ? null : (chips.length === 1 ? chips[0] : chi ps); } const colSel = f.querySelector('.f-col select') || f.querySelector('.f-col '); return {column: colSel.value, op, value}; }) }; if (graphTypeSel.value === 'table' || graphTypeSel.value === 'timeseries') { payload.group_by = groupBy.chips || []; payload.aggregate = document.getElementById('aggregate').value; payload.show_hits = document.getElementById('show_hits').checked; } if (graphTypeSel.value === 'timeseries') { payload.x_axis = document.getElementById('x_axis').value; payload.granularity = document.getElementById('granularity').value; payload.fill = document.getElementById('fill').value; } return payload; } function paramsToSearch(params) { const sp = new URLSearchParams(); if (params.start) sp.set('start', params.start); if (params.end) sp.set('end', params.end); if (params.order_by) sp.set('order_by', params.order_by); if (params.order_dir) sp.set('order_dir', params.order_dir); if (params.limit !== null && params.limit !== undefined) sp.set('limit', param s.limit); if (params.columns && params.columns.length) sp.set('columns', params.columns. join(',')); if (params.filters && params.filters.length) sp.set('filters', JSON.stringify( params.filters)); if (params.graph_type) sp.set('graph_type', params.graph_type); if (params.graph_type === 'table' || params.graph_type === 'timeseries') { if (params.group_by && params.group_by.length) sp.set('group_by', params.gro up_by.join(',')); if (params.aggregate) sp.set('aggregate', params.aggregate); if (params.show_hits) sp.set('show_hits', '1'); } if (params.graph_type === 'timeseries') { if (params.x_axis) sp.set('x_axis', params.x_axis); if (params.granularity) sp.set('granularity', params.granularity); if (params.fill) sp.set('fill', params.fill); } const qs = sp.toString(); return qs ? '?' + qs : ''; } function applyParams(params) { document.getElementById('start').value = params.start || ''; document.getElementById('end').value = params.end || ''; if (params.order_by) { document.getElementById('order_by').value = params.order_by; } orderDir = params.order_dir || 'ASC'; updateOrderDirButton();
(scubaduck) root@8b10638fd893:/workspace/scubaduck# sed -n '930,1160p' scubaduck /static/index.html updateOrderDirButton(); if (params.limit !== undefined && params.limit !== null) { document.getElementById('limit').value = params.limit; } graphTypeSel.value = params.graph_type || 'samples'; updateDisplayTypeUI(); if (params.x_axis) document.getElementById('x_axis').value = params.x_axis; if (params.granularity) document.getElementById('granularity').value = params. granularity; if (params.fill) document.getElementById('fill').value = params.fill; if (params.group_by) { groupBy.chips.splice(0, groupBy.chips.length, ...params.group_by); groupBy.renderChips(); } if (params.aggregate) document.getElementById('aggregate').value = params.aggr egate; document.getElementById('show_hits').checked = params.show_hits ?? true; document.querySelectorAll('#column_groups input').forEach(cb => { cb.checked = !params.columns || params.columns.includes(cb.value); }); updateSelectedColumns(); const list = document.getElementById('filter_list'); list.innerHTML = ''; if (params.filters && params.filters.length) { params.filters.forEach(f => { addFilter(); const el = list.lastElementChild; const colSel = el.querySelector('.f-col select') || el.querySelector('.f-c ol'); colSel.value = f.column; colSel.dispatchEvent(new Event('change')); el.querySelector('.f-op').value = f.op; el.querySelector('.f-op').dispatchEvent(new Event('change')); if (f.value !== null && f.op !== 'empty' && f.op !== '!empty') { const values = Array.isArray(f.value) ? f.value : [f.value]; values.forEach(v => el.addChip(v)); el.renderChips(); } }); } else { addFilter(); } } function parseSearch() { const sp = new URLSearchParams(window.location.search); const params = {}; if (sp.has('start')) params.start = sp.get('start'); if (sp.has('end')) params.end = sp.get('end'); if (sp.has('order_by')) params.order_by = sp.get('order_by'); if (sp.has('order_dir')) params.order_dir = sp.get('order_dir'); if (sp.has('limit')) params.limit = parseInt(sp.get('limit'), 10); if (sp.has('columns')) params.columns = sp.get('columns').split(',').filter(c => c); if (sp.has('filters')) { try { params.filters = JSON.parse(sp.get('filters')); } catch(e) { params.fi lters = []; } } if (sp.has('graph_type')) params.graph_type = sp.get('graph_type'); if (sp.has('group_by')) params.group_by = sp.get('group_by').split(',').filter (c => c); if (sp.has('aggregate')) params.aggregate = sp.get('aggregate'); if (sp.has('show_hits')) params.show_hits = sp.get('show_hits') === '1'; if (sp.has('x_axis')) params.x_axis = sp.get('x_axis'); if (sp.has('granularity')) params.granularity = sp.get('granularity'); if (sp.has('fill')) params.fill = sp.get('fill'); return params; } function initFromUrl() { const params = parseSearch(); history.replaceState(params, '', paramsToSearch(params)); applyParams(params); dive(false); } window.addEventListener('popstate', e => { const params = e.state || parseSearch(); applyParams(params); dive(false); }); let originalRows = []; let sortState = {index: null, dir: null}; function renderTable(rows) { const table = document.getElementById('results'); table.innerHTML = ''; if (rows.length === 0) return; let hitsIndex = selectedColumns.indexOf('Hits'); let totalHits = 0; if (hitsIndex !== -1) { totalHits = rows.reduce((s, r) => s + Number(r[hitsIndex]), 0); } const header = document.createElement('tr'); selectedColumns.forEach((col, i) => { const th = document.createElement('th'); let label = col; if ( displayType === 'table' && col !== 'Hits' && !(groupBy.chips || []).includes(col) ) { const agg = document.getElementById('aggregate').value.toLowerCase(); label += ` (${agg})`; } th.textContent = label; th.dataset.index = i; th.addEventListener('click', handleSort); if (sortState.index === i) { th.classList.add('sorted'); th.textContent = label + (sortState.dir === 'desc' ? ' \u25BC' : ' \u25B2'); } if (!isStringColumn(col)) th.style.textAlign = 'right'; header.appendChild(th); }); table.appendChild(header); rows.forEach(row => { const tr = document.createElement('tr'); tr.addEventListener('click', () => { tr.classList.toggle('selected'); }); row.forEach((v, i) => { const col = selectedColumns[i]; const td = document.createElement('td'); if (isTimeColumn(col)) { const d = new Date(v); td.textContent = d.toLocaleString('en-US', { weekday: 'short', month: 'short', day: 'numeric', year: 'numeric', hour: 'numeric', minute: 'numeric', second: 'numeric', hour12: true, timeZoneName: 'short' }); } else { if (col === 'Hits') { const pct = totalHits ? ((v / totalHits) * 100).toFixed(1) : '0'; td.textContent = `${formatNumber(v)} (${pct}%)`; } else { td.textContent = isStringColumn(col) ? v : formatNumber(v); } } td.style.textAlign = isStringColumn(col) ? 'left' : 'right'; tr.appendChild(td); }); table.appendChild(tr); }); // ensure table does not overflow unless necessary const view = document.getElementById('view'); if (table.scrollWidth <= view.clientWidth) { table.style.width = '100%'; } } function handleSort(e) { const idx = parseInt(e.target.dataset.index, 10); if (sortState.index !== idx) { sortState.index = idx; sortState.dir = 'asc'; } else if (sortState.dir === 'asc') { sortState.dir = 'desc'; } else if (sortState.dir === 'desc') { sortState.index = null; sortState.dir = null; } else { sortState.dir = 'asc'; } let rows = originalRows.slice(); if (sortState.index !== null) { rows.sort((a, b) => { const va = a[sortState.index]; const vb = b[sortState.index]; if (va === vb) return 0; if (sortState.dir === 'desc') return va < vb ? 1 : -1; return va > vb ? 1 : -1; }); } renderTable(rows); } function showTimeSeries(data) { const view = document.getElementById('view'); if (data.rows.length === 0) { view.innerHTML = '<p id="empty-message">Empty data provided to table</p>'; return; } const width = 600; const height = 400; view.innerHTML = '<div id="legend"></div><svg id="chart" width="' + width + '" height="' + height + '"></svg>'; const svg = document.getElementById('chart'); const legend = document.getElementById('legend'); const groups = groupBy.chips || []; const hasHits = document.getElementById('show_hits').checked ? 1 : 0; const series = {}; let minX = Infinity, maxX = -Infinity, minY = Infinity, maxY = -Infinity; data.rows.forEach(r => { const ts = new Date(r[0]).getTime(); const key = groups.map((_, i) => r[1 + i]).join(':') || 'all'; const val = Number(r[1 + groups.length + hasHits]); if (!series[key]) series[key] = []; series[key].push({x: ts, y: val}); if (ts < minX) minX = ts; if (ts > maxX) maxX = ts; if (val < minY) minY = val; if (val > maxY) maxY = val; }); const colors = ['#1f77b4','#ff7f0e','#2ca02c','#d62728','#9467bd','#8c564b','# e377c2']; let colorIndex = 0; const xScale = x => ((x - minX) / (maxX - minX)) * (width - 60) + 50; const yScale = y => height - 30 - ((y - minY) / (maxY - minY)) * (height - 60) ; Object.keys(series).forEach(key => { const pts = series[key]; const color = colors[colorIndex++ % colors.length]; const path = pts.map((p,i)=> (i===0? 'M':'L') + xScale(p.x) + ' ' + yScale(p .y)).join(' '); const el = document.createElementNS('http://www.w3.org/2000/svg','path'); el.setAttribute('d', path); el.setAttribute('fill','none'); el.setAttribute('stroke', color); svg.appendChild(el); const item = document.createElement('div'); item.textContent = key; item.style.color = color; legend.appendChild(item); }); } function showResults(data) { window.lastResults = data; const view = document.getElementById('view'); if (graphTypeSel.value === 'timeseries') { showTimeSeries(data); } else { (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll review lines 1160 to 1420 in the JS file next.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# sed -n '1160,1420p' scubaduc k/static/index.html } else { if (data.rows.length === 0) { view.innerHTML = '<p id="empty-message">Empty data provided to table</p><table id="result s"></table>'; } else { view.innerHTML = '<table id="results"></table>'; } originalRows = data.rows.slice(); sortState = {index: null, dir: null}; renderTable(originalRows); } document.getElementById('query_info').textContent = `Your query took about ${lastQueryTime} ms`; } function showError(err) { window.lastResults = err; const view = document.getElementById('view'); let msg = ''; if (typeof err === 'string') { msg = err; } else if (err) { msg = err.error || 'Error'; if (err.sql) { msg += '\nSQL: ' + err.sql; } if (err.traceback) { msg += '\n' + err.traceback; } } view.innerHTML = `<pre id="error-message">${msg}</pre>`; document.getElementById('query_info').textContent = ''; } function setSelectValue(selector, value) { const el = typeof selector === 'string' ? document.querySelector(selector) : s elector; if (el) { const select = el.tagName === 'SELECT' ? el : el.querySelector('select'); if (select) { select.value = value; select.dispatchEvent(new Event('change')); } } } </script> </body> </html> (scubaduck) root@8b10638fd893:/workspace/scubaduck#

The timeseries uses showTimeSeries; selected columns include groupBy, hits, and base columns. The bug happens when string columns are included in aggregators. I'll implement a fix for this by unchecked time columns.

I'll add both server and frontend tests: server for query, frontend for UI behavior.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# ls tests __pycache__ conftest.py test_server.py test_web.py
from pathlib import Path import duckdb from scubaduck import server import pytest def test_basic_query() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-02 00:00:00", "order_by": "timestamp", "order_dir": "ASC", "limit": 10, "columns": ["timestamp", "event", "value", "user"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert data rows = data["rows"] # We expect first three rows (until 2024-01-02 00:00:00) assert len(rows) == 3 assert rows[0][1] == "login" assert rows[1][1] == "logout" def test_filter_multi_token() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-02 03:00:00", "order_by": "timestamp", "limit": 10, "columns": ["timestamp", "event", "value", "user"], "filters": [{"column": "user", "op": "=", "value": ["alice", "charlie"]} ], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert data rows = data["rows"] # Should only return rows for alice and charlie assert len(rows) == 3 assert rows[0][3] == "alice" assert rows[-1][3] == "charlie" def test_empty_filter_is_noop() -> None: app = server.app client = app.test_client() base_payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "limit": 100, "columns": ["timestamp", "event", "value", "user"], } no_filter = {**base_payload, "filters": []} empty_filter = { **base_payload, "filters": [{"column": "user", "op": "=", "value": None}], } rv1 = client.post( "/api/query", data=json.dumps(no_filter), content_type="application/json " ) rv2 = client.post( "/api/query", data=json.dumps(empty_filter), content_type="application/j son" ) rows1 = rv1.get_json()["rows"] rows2 = rv2.get_json()["rows"] assert rows1 == rows2 def test_select_columns() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "order_by": "timestamp", "limit": 10, "columns": ["timestamp", "user"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert data rows = data["rows"] assert len(rows[0]) == 2 assert rows[0][1] == "alice" def test_string_filter_ops() -> None: app = server.app client = app.test_client() base = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "order_by": "timestamp", "limit": 100, "columns": ["timestamp", "event", "value", "user"], } contains = { **base, "filters": [{"column": "user", "op": "contains", "value": "ali"}], } rv = client.post( "/api/query", data=json.dumps(contains), content_type="application/json" ) rows = rv.get_json()["rows"] assert all("ali" in r[3] for r in rows) regex = { **base, "filters": [{"column": "user", "op": "~", "value": "^a.*"}], } rv = client.post( "/api/query", data=json.dumps(regex), content_type="application/json" ) rows = rv.get_json()["rows"] assert all(r[3].startswith("a") for r in rows) assert len(rows) == 2 not_empty = {**base, "filters": [{"column": "user", "op": "!empty"}]} rv = client.post( "/api/query", data=json.dumps(not_empty), content_type="application/json " ) assert len(rv.get_json()["rows"]) == 4 def _make_payload() -> dict[str, object]: return { "start": "2024-01-01 00:00:00", "end": "2024-01-02 00:00:00", "order_by": "timestamp", "order_dir": "ASC", "limit": 10, "columns": ["timestamp", "event", "value", "user"], "filters": [], } def test_database_types(tmp_path: Path) -> None: csv_file = tmp_path / "events.csv" csv_file.write_text(Path("scubaduck/sample.csv").read_text()) sqlite_file = tmp_path / "events.sqlite"
"CREATE TABLE events (timestamp TEXT, event TEXT, value INTEGER, user TE XT)" ) with open(csv_file) as f: next(f) for line in f: ts, ev, val, user = line.strip().split(",") conn.execute( "INSERT INTO events VALUES (?, ?, ?, ?)", (ts, ev, int(val), use r) ) conn.commit() conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce ssIssue] duckdb_file = tmp_path / "events.duckdb" con = duckdb.connect(duckdb_file) con.execute( f"CREATE TABLE events AS SELECT * FROM read_csv_auto('{csv_file.as_posix ()}')" ) con.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcces sIssue] for db in (csv_file, sqlite_file, duckdb_file): app = server.create_app(db) client = app.test_client() payload = _make_payload() rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/js on" ) rows = rv.get_json()["rows"] assert len(rows) == 3 def test_group_by_table() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "order_by": "user", "limit": 10, "columns": ["value"], "group_by": ["user"], "aggregate": "Sum", "show_hits": True, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) rows = rv.get_json()["rows"] assert rows[0][0] == "alice" assert rows[0][1] == 2 assert rows[0][2] == 40 def test_relative_time_query(monkeypatch: pytest.MonkeyPatch) -> None: app = server.app client = app.test_client() from datetime import datetime fixed_now = datetime(2024, 1, 2, 4, 0, 0) class FixedDateTime(datetime): @classmethod def now(cls, tz=None): # type: ignore[override] return fixed_now if tz is None else fixed_now.astimezone(tz) monkeypatch.setattr(server, "datetime", FixedDateTime) payload = { "start": "-1 hour", "end": "now", "order_by": "timestamp", "limit": 100, "columns": ["timestamp", "event", "value", "user"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 1 assert data["rows"][0][3] == "charlie" def test_invalid_time_error() -> None: app = server.app client = app.test_client() payload = { "start": "nonsense", "end": "now", "order_by": "timestamp", "limit": 10, "columns": ["timestamp"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "error" in data def test_query_error_returns_sql_and_traceback() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "columns": ["event"], "group_by": ["user"], "aggregate": "avg", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "error" in data def test_table_unknown_column_error() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "order_by": "timestamp", "limit": 100, "columns": ["user", "Hits", "value"], "group_by": ["user"], "aggregate": "Count", "show_hits": True, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "Unknown column" in data["error"] def test_samples_view_rejects_group_by() -> None: app = server.app client = app.test_client() payload = { "graph_type": "samples", "group_by": ["user"], "columns": ["timestamp"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json()
data = rv.get_json() assert rv.status_code == 400 assert "only valid" in data["error"] def test_table_avg_with_timestamp() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "order_by": "user", "limit": 100, "columns": ["user", "timestamp", "value"], "group_by": ["user"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert "error" not in data rows = data["rows"] assert rows[0][0] == "alice" from dateutil import parser ts = parser.parse(rows[0][1]).replace(tzinfo=None) assert ts == parser.parse("2024-01-01 12:00:00") def test_timeseries_basic() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "limit": 100, "group_by": ["user"], "aggregate": "Count", "columns": ["value"], "x_axis": "timestamp", "granularity": "1 day", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 4 (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll go through the remaining tests to see how everything looks.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# sed -n '640,960p' tests/test _server.py (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I found that when group_by is empty, the aggregator still applies, causing errors on non-numeric columns. I'll fix this by validating the aggregator before applying it, even when there’s no group_by.

To avoid binder errors, I'll uncheck string columns by default in the timeseries view.

To avoid errors, I'll modify the server to validate aggregator usage and uncheck time columns by default.

shell
) def run_query( page: Any, url: str, *, start: str | None = None, end: str | None = None, order_by: str | None = None, order_dir: str | None = "ASC", limit: int | None = None, group_by: list[str] | None = None, aggregate: str | None = None, ) -> dict[str, Any]: page.goto(url) page.wait_for_selector("#order_by option", state="attached") page.wait_for_selector("#order_dir", state="attached") page.wait_for_function("window.lastResults !== undefined") if start is not None: page.fill("#start", start) if end is not None: page.fill("#end", end) if order_by is not None: select_value(page, "#order_by", order_by) if order_dir is not None and order_dir == "DESC": page.click("#order_dir") if limit is not None: page.fill("#limit", str(limit)) if group_by is not None: select_value(page, "#graph_type", "table") page.evaluate( "g => { groupBy.chips = g; groupBy.renderChips(); }", group_by, ) if aggregate is not None: select_value(page, "#graph_type", "table") select_value(page, "#aggregate", aggregate) page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") return page.evaluate("window.lastResults") def test_range_filters(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-02 00:00:00", end="2024-01-02 04:00:00", order_by="timestamp", limit=100, ) assert len(data["rows"]) == 2 from dateutil import parser timestamps = [parser.parse(row[0]).replace(tzinfo=None) for row in data["row s"]] assert timestamps == [ parser.parse("2024-01-02 00:00:00"), parser.parse("2024-01-02 03:00:00"), ] def test_order_by(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="value", order_dir="DESC", limit=100, ) values = [row[2] for row in data["rows"]] assert values == sorted(values, reverse=True) def test_limit(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="timestamp", limit=2, ) assert len(data["rows"]) == 2 def test_simple_filter(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Add Filter") filter_el = page.query_selector("#filters .filter:last-child") assert filter_el page.evaluate( "arg => setSelectValue(arg.el.querySelector('.f-col'), arg.val)", {"el": filter_el, "val": "user"}, ) val_input = filter_el.query_selector(".f-val") val_input.click() page.keyboard.type("alice") page.keyboard.press("Enter") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") data = page.evaluate("window.lastResults") assert len(data["rows"]) == 2 assert all(row[3] == "alice" for row in data["rows"]) def test_default_filter_and_layout(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") count = page.evaluate("document.querySelectorAll('#filters .filter').length" ) assert count == 1 last_is_button = page.evaluate( "document.querySelector('#filters').lastElementChild.id === 'add_filter' " ) assert last_is_button position = page.evaluate( "getComputedStyle(document.querySelector('#filters .filter button.remove ')).position" ) assert position == "static" def test_filter_remove_alignment(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") diff = page.evaluate( "() => { const r=document.querySelector('#filters .filter-row').getBound ingClientRect(); const x=document.querySelector('#filters .filter-row button.rem ove').getBoundingClientRect(); return Math.abs(r.right - x.right); }" ) assert diff <= 1 def test_header_and_tabs(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") header = page.text_content("#header") assert "sample.csv" in header assert "events" in header assert page.is_visible("#settings") assert page.is_hidden("#columns") page.click("text=Columns") assert page.is_visible("#columns") cols = [c.strip() for c in page.locator("#column_groups li").all_inner_texts ()] assert "timestamp" in cols assert "event" in cols page.click("text=View Settings") assert page.is_visible("#settings") btn_color = page.evaluate( "getComputedStyle(document.querySelector('#dive')).backgroundColor" ) assert "rgb(0, 128, 0)" == btn_color sidebar_overflow = page.evaluate( "getComputedStyle(document.querySelector('#sidebar')).overflowY" ) view_overflow = page.evaluate( "getComputedStyle(document.querySelector('#view')).overflowY" ) assert sidebar_overflow == "auto" assert view_overflow == "auto" def test_graph_type_table_fields(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#graph_type", state="attached") select_value(page, "#graph_type", "table") assert page.is_visible("#group_by_field") assert page.is_visible("#aggregate_field") assert page.is_visible("#show_hits_field") page.click("text=Columns") assert not page.is_visible("text=Strings:") def test_graph_type_timeseries_fields(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#graph_type", state="attached") select_value(page, "#graph_type", "timeseries") assert page.is_visible("#group_by_field") assert page.is_visible("#aggregate_field") assert page.is_visible("#x_axis_field") assert page.is_visible("#granularity_field") assert page.is_visible("#fill_field") def test_help_and_alignment(page: Any, server_url: str) -> None: page.goto(server_url)
) assert text_align == "right" def test_table_sorting(page: Any, server_url: str) -> None: run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="timestamp", order_dir="ASC", limit=100, ) # header alignment align = page.evaluate( "getComputedStyle(document.querySelector('#results th')).textAlign" ) assert align == "right" header = page.locator("#results th").nth(3) def values() -> list[str]: return page.locator("#results td:nth-child(4)").all_inner_texts() orig_rows = values() assert orig_rows == ["alice", "bob", "alice", "charlie"] first_sql = page.evaluate("window.lastResults.sql") header.click() assert values() == sorted(orig_rows) assert header.inner_text().endswith("▲") color = page.evaluate( "getComputedStyle(document.querySelector('#results th:nth-child(4)')).co lor" ) assert "0, 0, 255" in color assert page.evaluate("window.lastResults.sql") == first_sql header.click() assert values() == sorted(orig_rows, reverse=True) assert header.inner_text().endswith("▼") header.click() assert values() == orig_rows assert header.inner_text() == "user" color = page.evaluate( "getComputedStyle(document.querySelector('#results th:nth-child(4)')).co lor" ) assert "0, 0, 255" not in color def test_relative_dropdown(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") btn = page.query_selector('[data-target="start-select"]') assert btn btn.click() page.click("#start-select div:text('-3 hours')") assert page.input_value("#start") == "-3 hours" def test_end_dropdown_now(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click('[data-target="end-select"]') page.click("#end-select div:text('now')") assert page.input_value("#end") == "now" def test_invalid_time_error_shown(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="nonsense", end="now", order_by="timestamp", ) assert "error" in data msg = page.text_content("#view") assert "nonsense" in msg def test_table_avg_group_by(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="timestamp", group_by=["user"], aggregate="Avg", ) assert "error" not in data assert len(data["rows"]) == 3 def test_column_toggle_and_selection(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Columns") page.wait_for_selector("#column_groups input", state="attached") count = page.evaluate( "document.querySelectorAll('#column_groups input:checked').length" ) assert count == 4 page.click("#columns_none") count = page.evaluate( "document.querySelectorAll('#column_groups input:checked').length" ) assert count == 0 page.click("#columns_all") count = page.evaluate( "document.querySelectorAll('#column_groups input:checked').length" ) assert count == 4 page.uncheck("#column_groups input[value='value']") page.click("text=View Settings") page.fill("#start", "2024-01-01 00:00:00") page.fill("#end", "2024-01-02 00:00:00") select_value(page, "#order_by", "timestamp") page.fill("#limit", "10") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") data = page.evaluate("window.lastResults") assert len(data["rows"][0]) == 3 headers = page.locator("#results th").all_inner_texts() assert "value" not in headers def test_columns_links_alignment(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Columns") page.wait_for_selector("#column_groups input", state="attached") tag = page.evaluate("document.getElementById('columns_all').tagName") assert tag == "A" align = page.evaluate( "getComputedStyle(document.querySelector('#column_actions')).textAlign" ) assert align == "right" def test_column_group_links(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Columns") page.wait_for_selector("#column_groups a", state="attached") tag = page.evaluate("document.querySelector('#column_groups .col-group a').t agName") assert tag == "A" def test_column_group_links_float_right(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Columns") page.wait_for_selector("#column_groups .col-group .links", state="attached") float_val = page.evaluate( "getComputedStyle(document.querySelector('#column_groups .col-group .lin ks')).float" ) assert float_val == "right" def test_chip_dropdown_navigation(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Add Filter") f = page.query_selector("#filters .filter:last-child") assert f page.evaluate( "arg => setSelectValue(arg.el.querySelector('.f-col'), arg.val)", {"el": f, "val": "user"}, ) inp = f.query_selector(".f-val") inp.click() page.wait_for_selector("#filters .filter:last-child .chip-dropdown div") page.keyboard.type("ali") page.wait_for_selector("text=alice") page.keyboard.press("ArrowDown") page.keyboard.press("Enter") chips = page.evaluate( "Array.from(document.querySelectorAll('#filters .filter:last-child .chip ')).map(c => c.firstChild.textContent)" ) assert chips == ["ali"] page.click("#filters .filter:last-child .chip .x") page.wait_for_selector(".chip", state="detached")
inp = f.query_selector(".f-val") inp.click() page.keyboard.type("alice") page.keyboard.press("Enter") inp.click() page.keyboard.type("bob") page.keyboard.press("Enter") f.query_selector(".chip-copy").click() assert page.evaluate("navigator.clipboard._data") == "alice,bob" page.evaluate( "var f=document.querySelector('#filters .filter:last-child'); f.chips=[] ; f.querySelectorAll('.chip').forEach(c=>c.remove())" ) page.wait_for_selector("#filters .chip", state="detached") inp.click() page.evaluate( "var dt=new DataTransfer(); dt.setData('text/plain','alice,bob'); var e= new ClipboardEvent('paste',{clipboardData:dt}); document.querySelector('#filters .filter:last-child .f-val').dispatchEvent(e);" ) chips = page.evaluate( "Array.from(document.querySelectorAll('#filters .filter:last-child .chip ')).map(c => c.firstChild.textContent)" ) assert chips[:2] == ["alice", "bob"] page.evaluate( "var f=document.querySelector('#filters .filter:last-child'); f.chips=[] ; f.querySelectorAll('.chip').forEach(c=>c.remove())" ) page.wait_for_selector("#filters .chip", state="detached") inp.click() page.evaluate( "var dt=new DataTransfer(); dt.setData('text/plain','alice,bob'); var e= new ClipboardEvent('paste',{clipboardData:dt}); Object.defineProperty(e,'shiftKe y',{value:true}); document.querySelector('#filters .filter:last-child .f-val').d ispatchEvent(e);" ) chips = page.evaluate( "Array.from(document.querySelectorAll('#filters .filter:last-child .chip ')).map(c => c.firstChild.textContent)" ) assert chips[-1] == "alice,bob" def test_chip_dropdown_hides_on_outside_click(page: Any, server_url: str) -> Non e: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Add Filter") f = page.query_selector("#filters .filter:last-child") assert f page.evaluate( "arg => setSelectValue(arg.el.querySelector('.f-col'), arg.val)", {"el": f, "val": "user"}, ) inp = f.query_selector(".f-val") inp.click() page.wait_for_selector("#filters .filter:last-child .chip-dropdown div") page.click("#header") page.wait_for_selector("#filters .filter:last-child .chip-dropdown", state=" hidden") def test_chip_input_no_outline(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Add Filter") inp = page.query_selector("#filters .filter:last-child .f-val") assert inp inp.click() outline = page.evaluate( "getComputedStyle(document.querySelector('#filters .filter:last-child .f -val')).outlineStyle" ) assert outline == "none" def test_chip_enter_keeps_focus(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Add Filter") f = page.query_selector("#filters .filter:last-child") assert f page.evaluate( "arg => setSelectValue(arg.el.querySelector('.f-col'), arg.val)", {"el": f, "val": "user"}, ) inp = f.query_selector(".f-val") inp.click() page.wait_for_selector("#filters .filter:last-child .chip-dropdown") page.keyboard.type("alice") page.keyboard.press("Enter") focused = page.evaluate( "document.activeElement === document.querySelector('#filters .filter:las t-child .f-val')" ) assert focused visible = page.evaluate( "getComputedStyle(document.querySelector('#filters .filter:last-child .c hip-dropdown')).display" ) assert visible == "none" def test_chip_delete_keeps_focus(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Add Filter") f = page.query_selector("#filters .filter:last-child") assert f page.evaluate( "arg => setSelectValue(arg.el.querySelector('.f-col'), arg.val)", {"el": f, "val": "user"}, ) inp = f.query_selector(".f-val") inp.click() page.wait_for_selector("#filters .filter:last-child .chip-dropdown") page.keyboard.type("alice") page.keyboard.press("Enter") page.keyboard.type("b") page.wait_for_selector("#filters .filter:last-child .chip-dropdown") f.query_selector(".chip .x").click() page.wait_for_selector("#filters .filter:last-child .chip", state="detached" ) ... end="2024-01-02 00:00:00", order_by="timestamp", limit=1, ) cell = page.text_content("#results td") assert cell != "Invalid Date" valid = page.evaluate("v => !isNaN(Date.parse(v))", cell) assert valid def test_url_query_persistence(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.wait_for_function("window.lastResults !== undefined") page.fill("#start", "2024-01-01 00:00:00") page.fill("#end", "2024-01-02 00:00:00") page.fill("#limit", "1") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") first_url = page.url first_rows = page.evaluate("window.lastResults.rows.length") page.fill("#limit", "2") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") second_url = page.url second_rows = page.evaluate("window.lastResults.rows.length") assert second_rows != first_rows assert first_url != second_url page.go_back() page.wait_for_function("window.lastResults !== undefined") assert page.url == first_url assert page.evaluate("window.lastResults.rows.length") == first_rows def test_load_from_url(page: Any, server_url: str) -> None: url = ( f"{server_url}?start=2024-01-01%2000:00:00&end=2024-01-02%2000:00:00" "&order_by=timestamp&limit=2" ) page.goto(url) page.wait_for_selector("#order_by option", state="attached") page.wait_for_function("window.lastResults !== undefined") assert page.input_value("#start") == "2024-01-01 00:00:00" assert page.input_value("#end") == "2024-01-02 00:00:00" assert page.input_value("#limit") == "2" assert page.evaluate("window.lastResults.rows.length") == 2 def test_empty_data_message(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2025-01-01 00:00:00", end="2025-01-02 00:00:00", order_by="timestamp", limit=100, ) assert data["rows"] == [] msg = page.text_content("#view") assert "Empty data provided to table" in msg def test_group_by_chip_from_url(page: Any, server_url: str) -> None: url = f"{server_url}?graph_type=table&group_by=user&order_by=user&limit=10" page.goto(url) page.wait_for_selector("#group_by_field .chip", state="attached") chips = page.evaluate( "Array.from(document.querySelectorAll('#group_by_field .chip')).map(c => c.firstChild.textContent)" ) assert chips == ["user"] def test_group_by_autocomplete(page: Any, server_url: str) -> None: page.goto(f"{server_url}?graph_type=table") page.wait_for_selector("#group_by_field", state="visible") inp = page.query_selector("#group_by_field .f-val") assert inp inp.click() page.keyboard.type("us") page.wait_for_selector("#group_by_field .chip-dropdown div") options = page.locator("#group_by_field .chip-dropdown div").all_inner_texts () assert "user" in options def test_group_by_copy_icon(page: Any, server_url: str) -> None: page.goto(f"{server_url}?graph_type=table") page.wait_for_selector("#group_by_field", state="visible") icon = page.text_content("#group_by_field .chip-copy") assert icon == "⎘" def test_group_by_input_no_border(page: Any, server_url: str) -> None: page.goto(f"{server_url}?graph_type=table") page.wait_for_selector("#group_by_field", state="visible") border = page.evaluate( "getComputedStyle(document.querySelector('#group_by_field .f-val')).bord erStyle" ) assert border == "none" def test_table_group_by_query(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="timestamp", limit=100, group_by=["user"], aggregate="Count", ) assert "error" not in data assert len(data["rows"]) == 3 def test_table_avg_no_group_by(page: Any, server_url: str) -> None: data = run_query( (scubaduck) root@8b10638fd893:/workspace/scubaduck#
data = run_query( page, server_url, aggregate="Avg", ) assert len(data["rows"]) == 1 row = data["rows"][0] assert row[0] == 4 from dateutil import parser ts = parser.parse(row[1]).replace(tzinfo=None) assert ts == parser.parse("2024-01-01 13:00:00") assert row[2] == 25 def test_table_headers_show_aggregate(page: Any, server_url: str) -> None: run_query( page, server_url, aggregate="Avg", ) headers = page.locator("#results th").all_inner_texts() assert "Hits" in headers assert "timestamp (avg)" in headers assert "value (avg)" in headers def test_format_number_function(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") vals = page.evaluate( "() => [formatNumber(815210), formatNumber(999.999), formatNumber(0.0004 ), formatNumber(0)]" ) assert vals == ["815.21 K", "999.999", "0.000", "0"] (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll check the rest of test_web from line 1120 to the end.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# sed -n '1120,1600p' tests/te st_web.py (scubaduck) root@8b10638fd893:/workspace/scubaduck#

Tests seem to end earlier, but I should confirm the file length is around 1200 lines.

shell
833 tests/test_web.py (scubaduck) root@8b10638fd893:/workspace/scubaduck#

Looks like the file has 833 lines, not thousands. Let's search for timeseries tests.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# grep -n "timeseries" -n test s/test_web.py | head 188:def test_graph_type_timeseries_fields(page: Any, server_url: str) -> None: 191: select_value(page, "#graph_type", "timeseries")
(scubaduck) root@8b10638fd893:/workspace/scubaduck# grep -n "showTimeSeries" -n tests/test_web.py (scubaduck) root@8b10638fd893:/workspace/scubaduck#

The bug happens when switching to Time Series with an incorrect 'avg' aggregator on a string column. I'll fix that by checking when an aggregator is 'avg' with numeric or time columns. I'll implement a server-side test for this and fix the frontend to defaults to numeric columns only when switching to timeseries.

I'll test the server's response for timeseries requests with ‘avg’ aggregator on a string column, expecting a 400 error. The default UI will also be updated to prevent errors from triggering by default.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# grep -n "test_table_avg_no_g roup_by" -n tests/test_web.py 799:def test_table_avg_no_group_by(page: Any, server_url: str) -> None:
page.keyboard.type("us") page.wait_for_selector("#group_by_field .chip-dropdown div") options = page.locator("#group_by_field .chip-dropdown div").all_inner_texts () assert "user" in options def test_group_by_copy_icon(page: Any, server_url: str) -> None: page.goto(f"{server_url}?graph_type=table") page.wait_for_selector("#group_by_field", state="visible") icon = page.text_content("#group_by_field .chip-copy") assert icon == "⎘" def test_group_by_input_no_border(page: Any, server_url: str) -> None: page.goto(f"{server_url}?graph_type=table") page.wait_for_selector("#group_by_field", state="visible") border = page.evaluate( "getComputedStyle(document.querySelector('#group_by_field .f-val')).bord erStyle" ) assert border == "none" def test_table_group_by_query(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="timestamp", limit=100, group_by=["user"], aggregate="Count", ) assert "error" not in data assert len(data["rows"]) == 3 def test_table_avg_no_group_by(page: Any, server_url: str) -> None: data = run_query( page, server_url, aggregate="Avg", ) assert len(data["rows"]) == 1 row = data["rows"][0] assert row[0] == 4 from dateutil import parser ts = parser.parse(row[1]).replace(tzinfo=None) assert ts == parser.parse("2024-01-01 13:00:00") assert row[2] == 25 def test_table_headers_show_aggregate(page: Any, server_url: str) -> None: (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I see 'test_table_avg_no_group_by' uses aggregate="Avg" but group_by=None. I'll add a test to check the default columns when switching to timeseries; specifically to ensure time columns aren't checked by default.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# grep -n "time series" -n tes ts/test_web.py (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll add a test for the timeseries scenario by checking default settings and initialization.

shell
baduck/static/index.html 518: initFromUrl(); 993:function initFromUrl() {
/static/index.html if (sp.has('filters')) { try { params.filters = JSON.parse(sp.get('filters')); } catch(e) { params.fi lters = []; } } if (sp.has('graph_type')) params.graph_type = sp.get('graph_type'); if (sp.has('group_by')) params.group_by = sp.get('group_by').split(',').filter (c => c); if (sp.has('aggregate')) params.aggregate = sp.get('aggregate'); if (sp.has('show_hits')) params.show_hits = sp.get('show_hits') === '1'; if (sp.has('x_axis')) params.x_axis = sp.get('x_axis'); if (sp.has('granularity')) params.granularity = sp.get('granularity'); if (sp.has('fill')) params.fill = sp.get('fill'); return params; } function initFromUrl() { const params = parseSearch(); history.replaceState(params, '', paramsToSearch(params)); applyParams(params); dive(false); } window.addEventListener('popstate', e => { const params = e.state || parseSearch(); applyParams(params); dive(false); }); let originalRows = []; let sortState = {index: null, dir: null}; function renderTable(rows) { const table = document.getElementById('results'); table.innerHTML = ''; if (rows.length === 0) return; let hitsIndex = selectedColumns.indexOf('Hits'); let totalHits = 0; if (hitsIndex !== -1) { totalHits = rows.reduce((s, r) => s + Number(r[hitsIndex]), 0); } const header = document.createElement('tr'); selectedColumns.forEach((col, i) => { const th = document.createElement('th'); let label = col; if ( displayType === 'table' && col !== 'Hits' && !(groupBy.chips || []).includes(col) ) { const agg = document.getElementById('aggregate').value.toLowerCase(); label += ` (${agg})`; } th.textContent = label; th.dataset.index = i; th.addEventListener('click', handleSort); if (sortState.index === i) { th.classList.add('sorted'); th.textContent = label + (sortState.dir === 'desc' ? ' \u25BC' : ' \u25B2'); } if (!isStringColumn(col)) th.style.textAlign = 'right'; header.appendChild(th); }); (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I see I can replicate the timeseries_basic test from test_server.py to trigger the issue.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# grep -n "timeseries" -n test s/test_server.py 351:def test_timeseries_basic() -> None: 357: "graph_type": "timeseries",
(scubaduck) root@8b10638fd893:/workspace/scubaduck# sed -n '348,376p' tests/test _server.py assert ts == parser.parse("2024-01-01 12:00:00") def test_timeseries_basic() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "limit": 100, "group_by": ["user"], "aggregate": "Count", "columns": ["value"], "x_axis": "timestamp", "granularity": "1 day", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 4 (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I’ll add a server test for a timeseries query with string columns and "avg" aggregator.

shell
" -n scubaduck/static/index.html 388:function updateDisplayTypeUI() { 415:graphTypeSel.addEventListener('change', updateDisplayTypeUI); 516: updateDisplayTypeUI(); 935: updateDisplayTypeUI();
(scubaduck) root@8b10638fd893:/workspace/scubaduck# sed -n '380,420p' scubaduck/ static/index.html sidebarResizer.addEventListener('mousedown', startSidebarDrag); let orderDir = 'ASC'; const orderDirBtn = document.getElementById('order_dir'); const graphTypeSel = document.getElementById('graph_type'); function updateOrderDirButton() { orderDirBtn.textContent = orderDir + (orderDir === 'ASC' ? ' \u25B2' : ' \u25B C'); } function updateDisplayTypeUI() { const showTable = graphTypeSel.value === 'table'; const showTS = graphTypeSel.value === 'timeseries'; document.getElementById('group_by_field').style.display = showTable || showTS ? 'flex' : 'none'; document.getElementById('aggregate_field').style.display = showTable || showTS ? 'flex' : 'none'; document.getElementById('show_hits_field').style.display = showTable ? 'flex' : 'none'; document.getElementById('x_axis_field').style.display = showTS ? 'flex' : 'non e'; document.getElementById('granularity_field').style.display = showTS ? 'flex' : 'none'; document.getElementById('fill_field').style.display = showTS ? 'flex' : 'none' ; document.querySelectorAll('#column_groups .col-group').forEach(g => { if (g.querySelector('.col-group-header').textContent.startsWith('Strings')) { g.style.display = showTable || showTS ? 'none' : ''; } }); if (showTS) { const lim = document.getElementById('limit'); if (!lim.dataset.setByUser) { lim.value = '7'; } } displayType = graphTypeSel.value; } orderDirBtn.addEventListener('click', () => { orderDir = orderDir === 'ASC' ? 'DESC' : 'ASC'; updateOrderDirButton(); }); updateOrderDirButton(); graphTypeSel.addEventListener('change', updateDisplayTypeUI); fetch('/api/columns').then(r => r.json()).then(cols => { const orderSelect = document.getElementById('order_by'); const xAxisSelect = document.getElementById('x_axis'); const groupsEl = document.getElementById('column_groups'); const groups = {
(scubaduck) root@8b10638fd893:/workspace/scubaduck# sed -n '420,520p' scubaduck/ static/index.html const groups = { time: {name: 'Time', cols: [], ul: null}, integer: {name: 'Integers', cols: [], ul: null}, string: {name: 'Strings', cols: [], ul: null} }; cols.forEach(c => { const t = c.type.toUpperCase(); columnTypes[c.name] = c.type; allColumns.push(c.name); let g = 'string'; if (t.includes('INT')) g = 'integer'; if (t.includes('TIMESTAMP')) { g = 'time'; timeColumns.push(c.name); } groups[g].cols.push(c.name); if (g !== 'string') { const o = document.createElement('option'); o.value = c.name; o.textContent = c.name; orderSelect.appendChild(o); } }); timeColumns.forEach(name => { const o = document.createElement('option'); o.value = name; o.textContent = name; xAxisSelect.appendChild(o); }); Object.keys(groups).forEach(key => { const g = groups[key]; const div = document.createElement('div'); div.className = 'col-group'; const header = document.createElement('div'); header.className = 'col-group-header'; header.appendChild(document.createTextNode(g.name + ': ')); const links = document.createElement('span'); links.className = 'links'; const allBtn = document.createElement('a'); allBtn.href = '#'; allBtn.textContent = 'All'; const noneBtn = document.createElement('a'); noneBtn.href = '#'; noneBtn.textContent = 'None'; links.appendChild(allBtn); links.appendChild(noneBtn); header.appendChild(links); div.appendChild(header); const ul = document.createElement('ul'); g.ul = ul; g.cols.forEach(name => { const li = document.createElement('li'); const label = document.createElement('label'); const cb = document.createElement('input'); cb.type = 'checkbox'; cb.value = name; cb.checked = true; cb.addEventListener('change', updateSelectedColumns); label.appendChild(cb); label.appendChild(document.createTextNode(' ' + name)); li.appendChild(label); ul.appendChild(li); }); allBtn.addEventListener('click', e => { e.preventDefault(); ul.querySelectorAll('input').forEach(cb => (cb.checked = true)); updateSelectedColumns(); }); noneBtn.addEventListener('click', e => { e.preventDefault(); ul.querySelectorAll('input').forEach(cb => (cb.checked = false)); updateSelectedColumns(); }); div.appendChild(ul); groupsEl.appendChild(div); }); document.getElementById('columns_all').addEventListener('click', e => { e.preventDefault(); groupsEl.querySelectorAll('input').forEach(cb => (cb.checked = true)); updateSelectedColumns(); }); document.getElementById('columns_none').addEventListener('click', e => { e.preventDefault(); groupsEl.querySelectorAll('input').forEach(cb => (cb.checked = false)); updateSelectedColumns(); }); updateSelectedColumns(); groupBy = document.getElementById('group_by').closest('.field'); initChipInput(groupBy, typed => allColumns.filter(c => c.toLowerCase().includes(typed.toLowerCase())) ); initDropdown(orderSelect); initDropdown(document.getElementById('aggregate')); document.getElementById('limit').addEventListener('input', e => { e.target.dataset.setByUser = '1'; }); updateDisplayTypeUI(); addFilter(); initFromUrl(); }); (scubaduck) root@8b10638fd893:/workspace/scubaduck#

When switching to time series, I’ll uncheck time columns by default to align with the requirement.

To avoid errors, I’ll uncheck non-numeric columns when switching to the time series view.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# cat scubaduck/sample.csv | h ead timestamp,event,value,user 2024-01-01 00:00:00,login,10,alice 2024-01-01 01:00:00,logout,20,bob 2024-01-02 00:00:00,login,30,alice 2024-01-02 03:00:00,login,40,charlie (scubaduck) root@8b10638fd893:/workspace/scubaduck#

The user expects to see a graph, but string columns cause errors. I'll adjust defaults.

The fix is to uncheck event, user, and time columns for timeseries graphs.

To prevent errors, I'll uncheck string columns and add server-side validation when switching to timeseries.

I'll improve checks for timeseries and non-grouped queries while preserving aggregation behavior.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# sed -n '312,420p' scubaduck/ server.py if params.graph_type not in {"table", "timeseries"} and ( params.group_by or params.aggregate or params.show_hits ): return ( jsonify( { "error": "group_by, aggregate and show_hits are only val id for table or timeseries view" } ), 400, ) valid_cols = set(column_types.keys()) if params.graph_type == "timeseries": if params.x_axis is None: for cand in ["time", "timestamp"]: if cand in valid_cols: params.x_axis = cand break if params.x_axis is None or params.x_axis not in valid_cols: return jsonify({"error": "Invalid x_axis"}), 400 ctype = column_types.get(params.x_axis, "").upper() if not any(t in ctype for t in ["TIMESTAMP", "DATE", "TIME"]): return jsonify({"error": "x_axis must be a time column"}), 400 for col in params.columns: if col not in valid_cols: return jsonify({"error": f"Unknown column: {col}"}), 400 for col in params.group_by: if col not in valid_cols: return jsonify({"error": f"Unknown column: {col}"}), 400 if params.order_by and params.order_by not in valid_cols: return jsonify({"error": f"Unknown column: {params.order_by}"}), 400 if params.group_by: agg = (params.aggregate or "avg").lower() if agg.startswith("p") or agg == "sum": need_numeric = True allow_time = False elif agg == "avg" or agg in {"min", "max"}: need_numeric = False allow_time = True else: need_numeric = False allow_time = False if need_numeric or allow_time: for c in params.columns: if c in params.group_by or c == params.x_axis: continue ctype = column_types.get(c, "").upper() is_numeric = any( t in ctype for t in [ "INT", "DECIMAL", "REAL", "DOUBLE", "FLOAT", "NUMERIC", "HUGEINT", ] ) is_time = "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype if need_numeric and not is_numeric: return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) if allow_time and not (is_numeric or is_time): return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) sql = build_query(params, column_types) try: rows = con.execute(sql).fetchall() except Exception as exc: tb = traceback.format_exc() print(f"Query failed:\n{sql}\n{tb}") return ( jsonify({"sql": sql, "error": str(exc), "traceback": tb}), 400, ) return jsonify({"sql": sql, "rows": rows}) return app app = create_app() if __name__ == "__main__": app.run(debug=True) (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I need to adjust the condition to check for both group_by and "timeseries". I'll ensure that when params.group_by is absent, the default aggregator is still set to "avg." I must also account for timeseries grouping behavior and skip timestamp as the 'x_axis' column. Additionally, I'll update UI behavior to uncheck time-related columns if graph_type is timeseries.

I need to make sure time and string columns are unchecked in timeseries mode. I'll call updateDisplayTypeUI() after the checkboxes and updateSelectedColumns are triggered.

To prevent errors, I'll uncheck string and time columns by default in timeseries mode.

I'll add a test for timeseries graphs, checking for default unchecked time columns and no errors.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# git status --short
(scubaduck) root@8b10638fd893:/workspace/scubaduck# git branch main * work (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I’ll update the server code as needed.

shell
if params.x_axis is None or params.x_axis not in valid_cols: return jsonify({"error": "Invalid x_axis"}), 400 ctype = column_types.get(params.x_axis, "").upper() if not any(t in ctype for t in ["TIMESTAMP", "DATE", "TIME"]): return jsonify({"error": "x_axis must be a time column"}), 400 for col in params.columns: if col not in valid_cols: return jsonify({"error": f"Unknown column: {col}"}), 400 for col in params.group_by: if col not in valid_cols: return jsonify({"error": f"Unknown column: {col}"}), 400 if params.order_by and params.order_by not in valid_cols: return jsonify({"error": f"Unknown column: {params.order_by}"}), 400 if params.group_by: agg = (params.aggregate or "avg").lower() if agg.startswith("p") or agg == "sum": need_numeric = True allow_time = False elif agg == "avg" or agg in {"min", "max"}: need_numeric = False allow_time = True else: need_numeric = False allow_time = False if need_numeric or allow_time: for c in params.columns: if c in params.group_by or c == params.x_axis: continue ctype = column_types.get(c, "").upper() is_numeric = any( t in ctype for t in [ "INT", "DECIMAL", "REAL", "DOUBLE", "FLOAT", "NUMERIC", "HUGEINT", ] ) is_time = "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype if need_numeric and not is_numeric: return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) if allow_time and not (is_numeric or is_time): return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) sql = build_query(params, column_types) try: rows = con.execute(sql).fetchall() except Exception as exc: tb = traceback.format_exc() print(f"Query failed:\n{sql}\n{tb}") return ( jsonify({"sql": sql, "error": str(exc), "traceback": tb}), 400, ) return jsonify({"sql": sql, "rows": rows}) return app app = create_app() if __name__ == "__main__": app.run(debug=True) (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll tweak the logic around group_by and graph_type for better handling.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# apply_patch<<'PATCH' > *** Begin Patch > *** Update File: scubaduck/server.py > @@ > - if params.group_by: > + if params.group_by or params.graph_type == "timeseries": > agg = (params.aggregate or "avg").lower() > *** End Patch > PATCH Success. Updated the following files: M scubaduck/server.py (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll verify that the new line was inserted correctly in the context.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# grep -n "params.group_by or params.graph_type" -n scubaduck/server.py 345: if params.group_by or params.graph_type == "timeseries": (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll show a code snippet around where the change occurred.

shell
if col not in valid_cols: return jsonify({"error": f"Unknown column: {col}"}), 400 if params.order_by and params.order_by not in valid_cols: return jsonify({"error": f"Unknown column: {params.order_by}"}), 400 if params.group_by or params.graph_type == "timeseries": agg = (params.aggregate or "avg").lower() if agg.startswith("p") or agg == "sum": need_numeric = True allow_time = False elif agg == "avg" or agg in {"min", "max"}: need_numeric = False allow_time = True else: need_numeric = False allow_time = False if need_numeric or allow_time: for c in params.columns: if c in params.group_by or c == params.x_axis: continue ctype = column_types.get(c, "").upper() is_numeric = any( t in ctype for t in [ "INT", "DECIMAL", "REAL", "DOUBLE", "FLOAT", "NUMERIC", "HUGEINT", ] ) is_time = "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype if need_numeric and not is_numeric: return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) if allow_time and not (is_numeric or is_time): return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) sql = build_query(params, column_types) try: rows = con.execute(sql).fetchall() except Exception as exc: tb = traceback.format_exc() print(f"Query failed:\n{sql}\n{tb}") return ( jsonify({"sql": sql, "error": str(exc), "traceback": tb}), 400, ) return jsonify({"sql": sql, "rows": rows}) return app app = create_app() if __name__ == "__main__": app.run(debug=True) (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'm considering how the change affects the aggregator when group_by is empty and the query is run. The test test_table_avg_no_group_by confirms that it previously succeeded even without group_by. However, the aggregator could cause a binder error for invalid columns. I'll ensure timestamp columns remain valid but leave string columns unchecked. Time to patch the issue in index.html.

I'm opening a patch to modify the updateDisplayTypeUI function. Let's dive in.

shell
function updateDisplayTypeUI() { const showTable = graphTypeSel.value === 'table'; const showTS = graphTypeSel.value === 'timeseries'; document.getElementById('group_by_field').style.display = showTable || showTS ? 'flex' : 'none'; document.getElementById('aggregate_field').style.display = showTable || showTS ? 'flex' : 'none'; document.getElementById('show_hits_field').style.display = showTable ? 'flex' : 'none'; document.getElementById('x_axis_field').style.display = showTS ? 'flex' : 'non e'; document.getElementById('granularity_field').style.display = showTS ? 'flex' : 'none'; document.getElementById('fill_field').style.display = showTS ? 'flex' : 'none' ; document.querySelectorAll('#column_groups .col-group').forEach(g => { if (g.querySelector('.col-group-header').textContent.startsWith('Strings')) { g.style.display = showTable || showTS ? 'none' : ''; } }); if (showTS) { const lim = document.getElementById('limit'); if (!lim.dataset.setByUser) { lim.value = '7'; } } displayType = graphTypeSel.value; } orderDirBtn.addEventListener('click', () => { orderDir = orderDir === 'ASC' ? 'DESC' : 'ASC'; updateOrderDirButton(); }); updateOrderDirButton(); (scubaduck) root@8b10638fd893:/workspace/scubaduck#

Time to apply the necessary changes and fix things up!

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# apply_patch<<'PATCH' > *** Begin Patch > *** Update File: scubaduck/static/index.html > @@ > if (showTS) { > const lim = document.getElementById('limit'); > if (!lim.dataset.setByUser) { > lim.value = '7'; > } > + document.querySelectorAll('#column_groups input').forEach(cb => { > + if (isTimeColumn(cb.value) || isStringColumn(cb.value)) { > + cb.checked = false; > + } > + }); > + updateSelectedColumns(); > } > displayType = graphTypeSel.value; > } > *** End Patch > PATCH Success. Updated the following files: M scubaduck/static/index.html (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll add the server test for timeseries column validation after the timeseries_basic test.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# grep -n "test_timeseries_bas ic" -n tests/test_server.py 351:def test_timeseries_basic() -> None: (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I think I'll add the new test right after this.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# sed -n '340,365p' tests/test _server.py data = rv.get_json() assert rv.status_code == 200 assert "error" not in data rows = data["rows"] assert rows[0][0] == "alice" from dateutil import parser ts = parser.parse(rows[0][1]).replace(tzinfo=None) assert ts == parser.parse("2024-01-01 12:00:00") def test_timeseries_basic() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "limit": 100, "group_by": ["user"], "aggregate": "Count", "columns": ["value"], "x_axis": "timestamp", "granularity": "1 day", } rv = client.post(
_server.py rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 4 (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'm going to patch the code before adding the new test.

shell
> *** Begin Patch > *** Update File: tests/test_server.py > @@ > def test_timeseries_basic() -> None: > @@ > assert len(data["rows"]) == 4 > + > + > +def test_timeseries_string_column_error() -> None: > + app = server.app > + client = app.test_client() > + payload = { > + "start": "2024-01-01 00:00:00", > + "end": "2024-01-03 00:00:00", > + "graph_type": "timeseries", > + "limit": 7, > + "columns": ["timestamp", "event", "value", "user"], > + "x_axis": "timestamp", > + "granularity": "1 hour", > + } > + rv = client.post( > + "/api/query", data=json.dumps(payload), content_type="application/jso n" > + ) > + data = rv.get_json() > + assert rv.status_code == 400 > + assert "Aggregate" in data["error"] > *** End Patch > PATCH Success. Updated the following files: M tests/test_server.py (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll use ruff with formatting first, then modify test cases in test_web.py.

shell
_web.py def test_graph_type_table_fields(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#graph_type", state="attached") select_value(page, "#graph_type", "table") assert page.is_visible("#group_by_field") assert page.is_visible("#aggregate_field") assert page.is_visible("#show_hits_field") page.click("text=Columns") assert not page.is_visible("text=Strings:") def test_graph_type_timeseries_fields(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#graph_type", state="attached") select_value(page, "#graph_type", "timeseries") assert page.is_visible("#group_by_field") assert page.is_visible("#aggregate_field") assert page.is_visible("#x_axis_field") assert page.is_visible("#granularity_field") assert page.is_visible("#fill_field") def test_help_and_alignment(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") titles = page.evaluate( "Array.from(document.querySelectorAll('#settings .help')).map(e => e.tit le)" ) assert any("start/end of the time range" in t for t in titles) text_align = page.evaluate( "getComputedStyle(document.querySelector('#settings label')).textAlign" ) assert text_align == "right" (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I’ll add the new test after the timeseries fields or another existing test.

shell
> *** Begin Patch > *** Update File: tests/test_web.py > @@ > def test_graph_type_timeseries_fields(page: Any, server_url: str) -> None: > @@ > assert page.is_visible("#fill_field") > + > + > +def test_timeseries_default_query(page: Any, server_url: str) -> None: > + page.goto(server_url) > + page.wait_for_selector("#graph_type", state="attached") > + select_value(page, "#graph_type", "timeseries") > + page.evaluate("window.lastResults = undefined") > + page.click("text=Dive") > + page.wait_for_function("window.lastResults !== undefined") > + data = page.evaluate("window.lastResults") > + assert "error" not in data > + assert page.is_visible("#chart") > + page.click("text=Columns") > + assert not page.is_checked("#column_groups input[value='timestamp']") > *** End Patch > PATCH Success. Updated the following files: M tests/test_web.py (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll run ruff format to make sure the code is properly styled.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# ruff format scubaduck/server .py scubaduck/static/index.html tests/test_server.py tests/test_web.py >/tmp/ruf f_format.txt && tail -n 20 /tmp/ruff_format.txt error: Failed to parse scubaduck/static/index.html:1:1: Expected a statement (scubaduck) root@8b10638fd893:/workspace/scubaduck#

Ruff format only supports Python files, so I won't run it on HTML.

shell
.py tests/test_server.py tests/test_web.py >/tmp/ruff_format.txt && tail -n 20 / tmp/ruff_format.txt 3 files left unchanged
(scubaduck) root@8b10638fd893:/workspace/scubaduck# ruff check >/tmp/ruff_check. txt && tail -n 20 /tmp/ruff_check.txt All checks passed!
(scubaduck) root@8b10638fd893:/workspace/scubaduck# pyright >/tmp/pyright.txt && tail -n 20 /tmp/pyright.txt
0 errors, 0 warnings, 0 informations
(scubaduck) root@8b10638fd893:/workspace/scubaduck# pytest -q >/tmp/pytest.txt & & tail -n 20 /tmp/pytest.txt



(scubaduck) root@8b10638fd893:/workspace/scubaduck#

It seems like tests might not have run; I'll open the output file for details.

shell
bringing up nodes... bringing up nodes... ...........................F.............................. [100%] =================================== FAILURES =================================== ___________________ test_timeseries_default_query[chromium] ____________________ [gw3] linux -- Python 3.12.3 /workspace/scubaduck/.venv/bin/python Traceback (most recent call last): File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/runner.p y", line 341, in from_call result: TResult | None = func() ^^^^^^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/runner.p y", line 242, in <lambda> lambda: runtest_hook(item=item, **kwds), when=when, reraise=reraise ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_hooks.py ", line 512, in __call__ return self._hookexec(self.name, self._hookimpls.copy(), kwargs, firstresult ) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_manager. py", line 120, in _hookexec return self._inner_hookexec(hook_name, methods, kwargs, firstresult) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_callers. py", line 167, in _multicall raise exception File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_callers. py", line 139, in _multicall teardown.throw(exception) File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/threadex ception.py", line 92, in pytest_runtest_call yield from thread_exception_runtest_hook() File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/threadex ception.py", line 68, in thread_exception_runtest_hook yield File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_callers. py", line 139, in _multicall teardown.throw(exception) File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/unraisab leexception.py", line 95, in pytest_runtest_call yield from unraisable_exception_runtest_hook() File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/unraisab leexception.py", line 70, in unraisable_exception_runtest_hook yield File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_callers. py", line 139, in _multicall teardown.throw(exception) File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/logging. py", line 846, in pytest_runtest_call yield from self._runtest_for(item, "call") File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/logging. py", line 829, in _runtest_for yield File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_callers. py", line 139, in _multicall teardown.throw(exception) File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/capture. py", line 898, in pytest_runtest_call return (yield) ^^^^^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_callers. py", line 139, in _multicall teardown.throw(exception) File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/skipping .py", line 257, in pytest_runtest_call return (yield) ^^^^^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_callers. py", line 121, in _multicall res = hook_impl.function(*args) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/runner.p y", line 174, in pytest_runtest_call item.runtest() File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/python.p y", line 1627, in runtest self.ihook.pytest_pyfunc_call(pyfuncitem=self) File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_hooks.py ", line 512, in __call__ return self._hookexec(self.name, self._hookimpls.copy(), kwargs, firstresult ) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_manager. py", line 120, in _hookexec return self._inner_hookexec(hook_name, methods, kwargs, firstresult) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_callers. py", line 167, in _multicall raise exception File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_callers. py", line 121, in _multicall res = hook_impl.function(*args) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/python.p y", line 159, in pytest_pyfunc_call result = testfunction(**testargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/workspace/scubaduck/tests/test_web.py", line 207, in test_timeseries_de fault_query assert "error" not in data AssertionError: assert 'error' not in {'error': 'Binder Error: column "timestamp " must appear in the GROUP BY clause or must be part of an aggregate functio...P BY bucket ORDER BY timestamp ASC LIMIT 7\n ^\n'} ----------------------------- Captured stdout call ----------------------------- Query failed: SELECT TIMESTAMP 'epoch' + INTERVAL '3600 second' * CAST(floor(epoch(timestamp)/ 3600) AS BIGINT) AS bucket, count(*) AS Hits, bucket, avg(value) AS value FROM e vents GROUP BY bucket ORDER BY timestamp ASC LIMIT 7 Traceback (most recent call last): File "/workspace/scubaduck/scubaduck/server.py", line 394, in query rows = con.execute(sql).fetchall() ^^^^^^^^^^^^^^^^ duckdb.duckdb.BinderException: Binder Error: column "timestamp" must appear in t he GROUP BY clause or must be part of an aggregate function. Either add it to the GROUP BY list, or use "ANY_VALUE(timestamp)" if the exact v alue of "timestamp" is not important. LINE 1: ..., avg(value) AS value FROM events GROUP BY bucket ORDER BY timestamp ASC LIMIT 7 ^ ------------------------------ Captured log call ------------------------------- INFO werkzeug:_internal.py:97 127.0.0.1 - - [21/May/2025 03:58:23] "GET / HT TP/1.1" 200 - INFO werkzeug:_internal.py:97 127.0.0.1 - - [21/May/2025 03:58:23] "GET /api /columns HTTP/1.1" 200 - INFO werkzeug:_internal.py:97 127.0.0.1 - - [21/May/2025 03:58:23] "POST /ap i/query HTTP/1.1" 200 - INFO werkzeug:_internal.py:97 127.0.0.1 - - [21/May/2025 03:58:23] "POST /ap i/query HTTP/1.1" 400 - =========================== short test summary info ============================ FAILED tests/test_web.py::test_timeseries_default_query[chromium] - assert 'e... 1 failed, 57 passed in 8.90s (scubaduck) root@8b10638fd893:/workspace/scubaduck#

The error appears because ORDER BY timestamp uses an ungrouped or unaggregated column. I'll adjust the query defaults to handle this.

The query fails due to ordering by an ungrouped timestamp. I need to adjust the logic for this case.

To fix the binder error, I can keep the timestamp checked but aggregate it.

Instead of unchecking timestamp, I’ll adjust order_by and uncheck string columns to avoid errors.

To avoid binder errors, I'll set order_by to empty or omit it when using time series.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# grep -n "order_by" -n scubad uck/static/index.html | head 162: <select id="order_by"></select> 423: const orderSelect = document.getElementById('order_by'); 876: order_by: document.getElementById('order_by').value, 909: if (params.order_by) sp.set('order_by', params.order_by); 932: if (params.order_by) { 933: document.getElementById('order_by').value = params.order_by; 982: if (sp.has('order_by')) params.order_by = sp.get('order_by'); (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'm thinking of keeping timestamp for ordering even if it's unchecked for display. I could adjust the logic so the UI hides time columns but still includes them in the query for ordering.

I should keep timestamp checked for order_by to work while unchecking other time columns.

I'll likely hide timestamp in UI while keeping it selected for sorting purposes.

I'll adjust to avoid sorting by timestamp, setting order_by to '' or 'x_axis' instead.

I'll patch the UI and set order_by to '' to avoid undefined behavior in query.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# sed -n '388,418p' scubaduck/ static/index.html function updateDisplayTypeUI() { const showTable = graphTypeSel.value === 'table'; const showTS = graphTypeSel.value === 'timeseries'; document.getElementById('group_by_field').style.display = showTable || showTS ? 'flex' : 'none'; document.getElementById('aggregate_field').style.display = showTable || showTS ? 'flex' : 'none'; document.getElementById('show_hits_field').style.display = showTable ? 'flex' : 'none'; document.getElementById('x_axis_field').style.display = showTS ? 'flex' : 'non e'; document.getElementById('granularity_field').style.display = showTS ? 'flex' : 'none'; document.getElementById('fill_field').style.display = showTS ? 'flex' : 'none' ; document.querySelectorAll('#column_groups .col-group').forEach(g => { if (g.querySelector('.col-group-header').textContent.startsWith('Strings')) { g.style.display = showTable || showTS ? 'none' : ''; } }); if (showTS) { const lim = document.getElementById('limit'); if (!lim.dataset.setByUser) { lim.value = '7'; } document.querySelectorAll('#column_groups input').forEach(cb => { if (isTimeColumn(cb.value) || isStringColumn(cb.value)) { cb.checked = false; } }); updateSelectedColumns(); } displayType = graphTypeSel.value; } orderDirBtn.addEventListener('click', () => { orderDir = orderDir === 'ASC' ? 'DESC' : 'ASC'; updateOrderDirButton(); (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'm updating the code to set order_by to blank as well.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# apply_patch<<'PATCH' > *** Begin Patch > *** Update File: scubaduck/static/index.html > @@ > - if (showTS) { > + if (showTS) { > const lim = document.getElementById('limit'); > if (!lim.dataset.setByUser) { > lim.value = '7'; > } > document.querySelectorAll('#column_groups input').forEach(cb => { > if (isTimeColumn(cb.value) || isStringColumn(cb.value)) { > cb.checked = false; > } > }); > + document.getElementById('order_by').value = ''; > updateSelectedColumns(); > } > *** End Patch > PATCH Success. Updated the following files: M scubaduck/static/index.html (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll run ruff for Python, but skip it for HTML since that's not possible.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# ruff format scubaduck/server .py tests/test_server.py tests/test_web.py >/tmp/ruff_format.txt && tail -n 20 / tmp/ruff_format.txt 3 files left unchanged (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll give ruff another shot to make sure things are in order.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# ruff check >/tmp/ruff_check. txt && tail -n 20 /tmp/ruff_check.txt All checks passed!
(scubaduck) root@8b10638fd893:/workspace/scubaduck# pyright >/tmp/pyright.txt && tail -n 20 /tmp/pyright.txt
0 errors, 0 warnings, 0 informations (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll run pytest one more time to check if the issue persists.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# pytest -q >/tmp/pytest.txt & & tail -n 20 /tmp/pytest.txt



bringing up nodes... bringing up nodes... .......................................................... [100%] 58 passed in 8.78s
(scubaduck) root@8b10638fd893:/workspace/scubaduck# tail -n 20 /tmp/pytest.txt bringing up nodes... bringing up nodes... .......................................................... [100%] 58 passed in 8.78s (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll review the git status now to see where I stand with my changes.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# git status --short M scubaduck/server.py M scubaduck/static/index.html M tests/test_server.py M tests/test_web.py (scubaduck) root@8b10638fd893:/workspace/scubaduck#

Time to make the commit!

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# git diff --staged (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I need to add changes to staging before proceeding.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# git add scubaduck/server.py scubaduck/static/index.html tests/test_server.py tests/test_web.py
(scubaduck) root@8b10638fd893:/workspace/scubaduck# git commit -m "fix: handle t imeseries avg on strings" && git status --short [work 2517fb4] fix: handle timeseries avg on strings 4 files changed, 42 insertions(+), 1 deletion(-)
(scubaduck) root@8b10638fd893:/workspace/scubaduck# git status --short (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I’ll grab lines around the changes in server.py for proper citation.

shell
336 for col in params.columns: 337 if col not in valid_cols: 338 return jsonify({"error": f"Unknown column: {col}"}), 400 339 for col in params.group_by: 340 if col not in valid_cols: 341 return jsonify({"error": f"Unknown column: {col}"}), 400 342 if params.order_by and params.order_by not in valid_cols: 343 return jsonify({"error": f"Unknown column: {params.order_by} "}), 400 344 345 if params.group_by or params.graph_type == "timeseries": 346 agg = (params.aggregate or "avg").lower() 347 if agg.startswith("p") or agg == "sum": 348 need_numeric = True 349 allow_time = False 350 elif agg == "avg" or agg in {"min", "max"}: 351 need_numeric = False 352 allow_time = True 353 else: 354 need_numeric = False 355 allow_time = False 356 if need_numeric or allow_time: 357 for c in params.columns: 358 if c in params.group_by or c == params.x_axis: 359 continue 360 ctype = column_types.get(c, "").upper() 361 is_numeric = any( 362 t in ctype 363 for t in [ 364 "INT", 365 "DECIMAL", 366 "REAL", 367 "DOUBLE", 368 "FLOAT", (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll grab a few more lines, extending from 368 to capture the patch.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# nl -ba scubaduck/server.py | sed -n '345,380p' 345 if params.group_by or params.graph_type == "timeseries": 346 agg = (params.aggregate or "avg").lower() 347 if agg.startswith("p") or agg == "sum": 348 need_numeric = True 349 allow_time = False 350 elif agg == "avg" or agg in {"min", "max"}: 351 need_numeric = False 352 allow_time = True 353 else: 354 need_numeric = False 355 allow_time = False 356 if need_numeric or allow_time: 357 for c in params.columns: 358 if c in params.group_by or c == params.x_axis: 359 continue 360 ctype = column_types.get(c, "").upper() 361 is_numeric = any( 362 t in ctype 363 for t in [ 364 "INT", 365 "DECIMAL", 366 "REAL", 367 "DOUBLE", 368 "FLOAT", 369 "NUMERIC", 370 "HUGEINT", 371 ] 372 ) 373 is_time = "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype 374 if need_numeric and not is_numeric: 375 return ( 376 jsonify( 377 { 378 "error": f"Aggregate {agg} cannot be applied to column {c}", 379 } 380 ), (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'll grab the modified lines near the patch in the static/index.html file.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# nl -ba scubaduck/static/inde x.html | sed -n '396,418p' 396 document.getElementById('fill_field').style.display = showTS ? 'flex' : 'none'; 397 document.querySelectorAll('#column_groups .col-group').forEach(g => { 398 if (g.querySelector('.col-group-header').textContent.startsWith('Str ings')) { 399 g.style.display = showTable || showTS ? 'none' : ''; 400 } 401 }); 402 if (showTS) { 403 const lim = document.getElementById('limit'); 404 if (!lim.dataset.setByUser) { 405 lim.value = '7'; 406 } 407 document.querySelectorAll('#column_groups input').forEach(cb => { 408 if (isTimeColumn(cb.value) || isStringColumn(cb.value)) { 409 cb.checked = false; 410 } 411 }); 412 document.getElementById('order_by').value = ''; 413 updateSelectedColumns(); 414 } 415 displayType = graphTypeSel.value; 416 } 417 orderDirBtn.addEventListener('click', () => { 418 orderDir = orderDir === 'ASC' ? 'DESC' : 'ASC'; (scubaduck) root@8b10638fd893:/workspace/scubaduck#

I'm adding the new server test snippet now.

shell
(scubaduck) root@8b10638fd893:/workspace/scubaduck# nl -ba tests/test_server.py | sed -n '348,390p' 348 assert ts == parser.parse("2024-01-01 12:00:00") 349 350 351 def test_timeseries_basic() -> None: 352 app = server.app 353 client = app.test_client() 354 payload = { 355 "start": "2024-01-01 00:00:00", 356 "end": "2024-01-03 00:00:00", 357 "graph_type": "timeseries", 358 "limit": 100, 359 "group_by": ["user"], 360 "aggregate": "Count", 361 "columns": ["value"], 362 "x_axis": "timestamp", 363 "granularity": "1 day", 364 } 365 rv = client.post( 366 "/api/query", data=json.dumps(payload), content_type="applicatio n/json" 367 ) 368 data = rv.get_json() 369 assert rv.status_code == 200 370 assert len(data["rows"]) == 4 371 372 373 def test_timeseries_string_column_error() -> None: 374 app = server.app 375 client = app.test_client() 376 payload = { 377 "start": "2024-01-01 00:00:00", 378 "end": "2024-01-03 00:00:00", 379 "graph_type": "timeseries", 380 "limit": 7, 381 "columns": ["timestamp", "event", "value", "user"], 382 "x_axis": "timestamp", 383 "granularity": "1 hour", 384 } 385 rv = client.post( 386 "/api/query", data=json.dumps(payload), content_type="applicatio n/json" 387 ) 388 data = rv.get_json() 389 assert rv.status_code == 400 390 assert "Aggregate" in data["error"]
(scubaduck) root@8b10638fd893:/workspace/scubaduck# nl -ba tests/test_web.py | s ed -n '188,214p' 188 def test_graph_type_timeseries_fields(page: Any, server_url: str) -> Non e: 189 page.goto(server_url) 190 page.wait_for_selector("#graph_type", state="attached") 191 select_value(page, "#graph_type", "timeseries") 192 assert page.is_visible("#group_by_field") 193 assert page.is_visible("#aggregate_field") 194 assert page.is_visible("#x_axis_field") 195 assert page.is_visible("#granularity_field") 196 assert page.is_visible("#fill_field") 197 198 199 def test_timeseries_default_query(page: Any, server_url: str) -> None: 200 page.goto(server_url) 201 page.wait_for_selector("#graph_type", state="attached") 202 select_value(page, "#graph_type", "timeseries") 203 page.evaluate("window.lastResults = undefined") 204 page.click("text=Dive") 205 page.wait_for_function("window.lastResults !== undefined") 206 data = page.evaluate("window.lastResults") 207 assert "error" not in data 208 assert page.is_visible("#chart") 209 page.click("text=Columns") 210 assert not page.is_checked("#column_groups input[value='timestamp']" ) 211 212 213 def test_help_and_alignment(page: Any, server_url: str) -> None: 214 page.goto(server_url) (scubaduck) root@8b10638fd893:/workspace/scubaduck#

Time to finalize the PR and write the message summary.