Codex Task Logs

Task ID: task_e_682e18d0844083238d2067f83465ef88

Environment setup
Building scubaduck @ file:///workspace/scubaduck Preparing packages... (0/33) pyee ------------------------------ 14.91 KiB/15.36 KiB itsdangerous ------------------------------ 14.88 KiB/15.85 KiB pytest-playwright ------------------------------ 16.23 KiB/16.23 KiB pluggy ------------------------------ 20.06 KiB/20.06 KiB markupsafe ------------------------------ 22.58 KiB/22.58 KiB execnet ------------------------------ 32.00 KiB/39.66 KiB pytest-xdist ------------------------------ 16.00 KiB/45.03 KiB requests ------------------------------ 16.00 KiB/63.41 KiB packaging ------------------------------ 14.88 KiB/64.91 KiB text-unidecode ------------------------------ 76.32 KiB/76.32 KiB click ------------------------------ 62.88 KiB/99.76 KiB flask ------------------------------ 62.88 KiB/100.88 KiB urllib3 ------------------------------ 77.40 KiB/125.66 KiB jinja2 ------------------------------ 6.87 KiB/131.74 KiB certifi ------------------------------ 155.88 KiB/155.88 KiB werkzeug ------------------------------ 93.69 KiB/219.24 KiB python-dateutil ------------------------------ 32.00 KiB/224.50 KiB pytest ------------------------------ 30.88 KiB/335.58 KiB greenlet ------------------------------ 495.59 KiB/589.71 KiB pyright ------------------------------ 14.91 KiB/5.31 MiB ruff ------------------------------ 92.68 KiB/11.02 MiB duckdb ------------------------------ 221.61 KiB/19.27 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (0/33) pyee ------------------------------ 14.91 KiB/15.36 KiB itsdangerous ------------------------------ 14.88 KiB/15.85 KiB pluggy ------------------------------ 20.06 KiB/20.06 KiB markupsafe ------------------------------ 22.58 KiB/22.58 KiB execnet ------------------------------ 32.00 KiB/39.66 KiB pytest-xdist ------------------------------ 32.00 KiB/45.03 KiB requests ------------------------------ 16.00 KiB/63.41 KiB packaging ------------------------------ 14.88 KiB/64.91 KiB text-unidecode ------------------------------ 76.32 KiB/76.32 KiB click ------------------------------ 62.88 KiB/99.76 KiB flask ------------------------------ 62.88 KiB/100.88 KiB urllib3 ------------------------------ 77.40 KiB/125.66 KiB jinja2 ------------------------------ 6.87 KiB/131.74 KiB certifi ------------------------------ 155.88 KiB/155.88 KiB werkzeug ------------------------------ 93.69 KiB/219.24 KiB python-dateutil ------------------------------ 32.00 KiB/224.50 KiB pytest ------------------------------ 30.88 KiB/335.58 KiB greenlet ------------------------------ 495.59 KiB/589.71 KiB pyright ------------------------------ 14.91 KiB/5.31 MiB ruff ------------------------------ 108.68 KiB/11.02 MiB duckdb ------------------------------ 237.61 KiB/19.27 MiB playwright ------------------------------ 8.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (0/33) pyee ------------------------------ 14.91 KiB/15.36 KiB itsdangerous ------------------------------ 14.88 KiB/15.85 KiB pluggy ------------------------------ 20.06 KiB/20.06 KiB markupsafe ------------------------------ 22.58 KiB/22.58 KiB execnet ------------------------------ 32.00 KiB/39.66 KiB pytest-xdist ------------------------------ 32.00 KiB/45.03 KiB requests ------------------------------ 32.00 KiB/63.41 KiB packaging ------------------------------ 46.88 KiB/64.91 KiB click ------------------------------ 62.88 KiB/99.76 KiB flask ------------------------------ 62.88 KiB/100.88 KiB urllib3 ------------------------------ 77.40 KiB/125.66 KiB jinja2 ------------------------------ 30.88 KiB/131.74 KiB certifi ------------------------------ 155.88 KiB/155.88 KiB werkzeug ------------------------------ 93.69 KiB/219.24 KiB python-dateutil ------------------------------ 48.00 KiB/224.50 KiB pytest ------------------------------ 62.88 KiB/335.58 KiB greenlet ------------------------------ 495.59 KiB/589.71 KiB pyright ------------------------------ 30.91 KiB/5.31 MiB ruff ------------------------------ 188.68 KiB/11.02 MiB duckdb ------------------------------ 333.61 KiB/19.27 MiB playwright ------------------------------ 16.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) pyee ------------------------------ 14.91 KiB/15.36 KiB itsdangerous ------------------------------ 14.88 KiB/15.85 KiB pluggy ------------------------------ 20.06 KiB/20.06 KiB markupsafe ------------------------------ 22.58 KiB/22.58 KiB execnet ------------------------------ 39.66 KiB/39.66 KiB pytest-xdist ------------------------------ 32.00 KiB/45.03 KiB requests ------------------------------ 32.00 KiB/63.41 KiB packaging ------------------------------ 46.88 KiB/64.91 KiB click ------------------------------ 78.88 KiB/99.76 KiB flask ------------------------------ 62.88 KiB/100.88 KiB urllib3 ------------------------------ 93.40 KiB/125.66 KiB jinja2 ------------------------------ 30.88 KiB/131.74 KiB certifi ------------------------------ 155.88 KiB/155.88 KiB werkzeug ------------------------------ 93.69 KiB/219.24 KiB python-dateutil ------------------------------ 48.00 KiB/224.50 KiB pytest ------------------------------ 62.88 KiB/335.58 KiB greenlet ------------------------------ 495.59 KiB/589.71 KiB pyright ------------------------------ 46.91 KiB/5.31 MiB ruff ------------------------------ 204.68 KiB/11.02 MiB duckdb ------------------------------ 349.61 KiB/19.27 MiB playwright ------------------------------ 16.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) pyee ------------------------------ 14.91 KiB/15.36 KiB itsdangerous ------------------------------ 14.88 KiB/15.85 KiB pluggy ------------------------------ 20.06 KiB/20.06 KiB execnet ------------------------------ 39.66 KiB/39.66 KiB pytest-xdist ------------------------------ 32.00 KiB/45.03 KiB requests ------------------------------ 32.00 KiB/63.41 KiB packaging ------------------------------ 46.88 KiB/64.91 KiB click ------------------------------ 78.88 KiB/99.76 KiB flask ------------------------------ 62.88 KiB/100.88 KiB urllib3 ------------------------------ 93.40 KiB/125.66 KiB jinja2 ------------------------------ 30.88 KiB/131.74 KiB certifi ------------------------------ 155.88 KiB/155.88 KiB werkzeug ------------------------------ 93.69 KiB/219.24 KiB python-dateutil ------------------------------ 48.00 KiB/224.50 KiB pytest ------------------------------ 62.88 KiB/335.58 KiB greenlet ------------------------------ 495.59 KiB/589.71 KiB pyright ------------------------------ 46.91 KiB/5.31 MiB ruff ------------------------------ 220.68 KiB/11.02 MiB duckdb ------------------------------ 365.61 KiB/19.27 MiB playwright ------------------------------ 16.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) pyee ------------------------------ 14.91 KiB/15.36 KiB pluggy ------------------------------ 20.06 KiB/20.06 KiB execnet ------------------------------ 39.66 KiB/39.66 KiB pytest-xdist ------------------------------ 32.00 KiB/45.03 KiB requests ------------------------------ 48.00 KiB/63.41 KiB packaging ------------------------------ 46.88 KiB/64.91 KiB click ------------------------------ 78.88 KiB/99.76 KiB flask ------------------------------ 62.88 KiB/100.88 KiB urllib3 ------------------------------ 93.40 KiB/125.66 KiB jinja2 ------------------------------ 30.88 KiB/131.74 KiB certifi ------------------------------ 155.88 KiB/155.88 KiB werkzeug ------------------------------ 109.69 KiB/219.24 KiB python-dateutil ------------------------------ 48.00 KiB/224.50 KiB pytest ------------------------------ 62.88 KiB/335.58 KiB greenlet ------------------------------ 495.59 KiB/589.71 KiB pyright ------------------------------ 78.91 KiB/5.31 MiB ruff ------------------------------ 252.68 KiB/11.02 MiB duckdb ------------------------------ 397.61 KiB/19.27 MiB playwright ------------------------------ 16.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) pluggy ------------------------------ 20.06 KiB/20.06 KiB execnet ------------------------------ 39.66 KiB/39.66 KiB pytest-xdist ------------------------------ 32.00 KiB/45.03 KiB requests ------------------------------ 48.00 KiB/63.41 KiB packaging ------------------------------ 46.88 KiB/64.91 KiB click ------------------------------ 94.88 KiB/99.76 KiB flask ------------------------------ 62.88 KiB/100.88 KiB urllib3 ------------------------------ 93.40 KiB/125.66 KiB jinja2 ------------------------------ 46.88 KiB/131.74 KiB certifi ------------------------------ 155.88 KiB/155.88 KiB werkzeug ------------------------------ 109.69 KiB/219.24 KiB python-dateutil ------------------------------ 48.00 KiB/224.50 KiB pytest ------------------------------ 62.88 KiB/335.58 KiB greenlet ------------------------------ 495.59 KiB/589.71 KiB pyright ------------------------------ 78.91 KiB/5.31 MiB ruff ------------------------------ 252.68 KiB/11.02 MiB duckdb ------------------------------ 397.61 KiB/19.27 MiB playwright ------------------------------ 32.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) pluggy ------------------------------ 20.06 KiB/20.06 KiB execnet ------------------------------ 39.66 KiB/39.66 KiB pytest-xdist ------------------------------ 32.00 KiB/45.03 KiB requests ------------------------------ 48.00 KiB/63.41 KiB packaging ------------------------------ 46.88 KiB/64.91 KiB click ------------------------------ 94.88 KiB/99.76 KiB flask ------------------------------ 78.88 KiB/100.88 KiB urllib3 ------------------------------ 93.40 KiB/125.66 KiB jinja2 ------------------------------ 46.88 KiB/131.74 KiB werkzeug ------------------------------ 109.69 KiB/219.24 KiB python-dateutil ------------------------------ 48.00 KiB/224.50 KiB pytest ------------------------------ 75.19 KiB/335.58 KiB greenlet ------------------------------ 495.59 KiB/589.71 KiB pyright ------------------------------ 94.91 KiB/5.31 MiB ruff ------------------------------ 268.68 KiB/11.02 MiB duckdb ------------------------------ 413.61 KiB/19.27 MiB playwright ------------------------------ 32.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) execnet ------------------------------ 39.66 KiB/39.66 KiB pytest-xdist ------------------------------ 32.00 KiB/45.03 KiB requests ------------------------------ 48.00 KiB/63.41 KiB packaging ------------------------------ 46.88 KiB/64.91 KiB click ------------------------------ 94.88 KiB/99.76 KiB flask ------------------------------ 78.88 KiB/100.88 KiB urllib3 ------------------------------ 93.40 KiB/125.66 KiB jinja2 ------------------------------ 46.88 KiB/131.74 KiB werkzeug ------------------------------ 109.69 KiB/219.24 KiB python-dateutil ------------------------------ 48.00 KiB/224.50 KiB pytest ------------------------------ 75.19 KiB/335.58 KiB greenlet ------------------------------ 495.59 KiB/589.71 KiB pyright ------------------------------ 94.91 KiB/5.31 MiB ruff ------------------------------ 268.68 KiB/11.02 MiB duckdb ------------------------------ 413.61 KiB/19.27 MiB playwright ------------------------------ 32.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) pytest-xdist ------------------------------ 45.03 KiB/45.03 KiB requests ------------------------------ 63.41 KiB/63.41 KiB packaging ------------------------------ 62.88 KiB/64.91 KiB click ------------------------------ 99.76 KiB/99.76 KiB flask ------------------------------ 78.88 KiB/100.88 KiB urllib3 ------------------------------ 93.40 KiB/125.66 KiB jinja2 ------------------------------ 94.76 KiB/131.74 KiB werkzeug ------------------------------ 125.69 KiB/219.24 KiB python-dateutil ------------------------------ 95.48 KiB/224.50 KiB pytest ------------------------------ 107.19 KiB/335.58 KiB greenlet ------------------------------ 495.59 KiB/589.71 KiB pyright ------------------------------ 238.91 KiB/5.31 MiB ruff ------------------------------ 412.68 KiB/11.02 MiB duckdb ------------------------------ 557.61 KiB/19.27 MiB playwright ------------------------------ 32.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) pytest-xdist ------------------------------ 45.03 KiB/45.03 KiB requests ------------------------------ 63.41 KiB/63.41 KiB packaging ------------------------------ 62.88 KiB/64.91 KiB flask ------------------------------ 94.88 KiB/100.88 KiB urllib3 ------------------------------ 93.40 KiB/125.66 KiB jinja2 ------------------------------ 94.76 KiB/131.74 KiB werkzeug ------------------------------ 141.69 KiB/219.24 KiB python-dateutil ------------------------------ 143.48 KiB/224.50 KiB pytest ------------------------------ 123.19 KiB/335.58 KiB greenlet ------------------------------ 511.59 KiB/589.71 KiB pyright ------------------------------ 270.91 KiB/5.31 MiB ruff ------------------------------ 444.68 KiB/11.02 MiB duckdb ------------------------------ 589.61 KiB/19.27 MiB playwright ------------------------------ 48.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) pytest-xdist ------------------------------ 45.03 KiB/45.03 KiB packaging ------------------------------ 62.88 KiB/64.91 KiB flask ------------------------------ 100.88 KiB/100.88 KiB urllib3 ------------------------------ 109.40 KiB/125.66 KiB jinja2 ------------------------------ 110.76 KiB/131.74 KiB werkzeug ------------------------------ 141.69 KiB/219.24 KiB python-dateutil ------------------------------ 191.48 KiB/224.50 KiB pytest ------------------------------ 123.19 KiB/335.58 KiB greenlet ------------------------------ 511.59 KiB/589.71 KiB pyright ------------------------------ 334.91 KiB/5.31 MiB ruff ------------------------------ 508.68 KiB/11.02 MiB duckdb ------------------------------ 669.61 KiB/19.27 MiB playwright ------------------------------ 48.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) pytest-xdist ------------------------------ 45.03 KiB/45.03 KiB flask ------------------------------ 100.88 KiB/100.88 KiB urllib3 ------------------------------ 109.40 KiB/125.66 KiB jinja2 ------------------------------ 110.76 KiB/131.74 KiB werkzeug ------------------------------ 141.69 KiB/219.24 KiB python-dateutil ------------------------------ 224.50 KiB/224.50 KiB pytest ------------------------------ 139.19 KiB/335.58 KiB greenlet ------------------------------ 511.59 KiB/589.71 KiB pyright ------------------------------ 382.91 KiB/5.31 MiB ruff ------------------------------ 556.68 KiB/11.02 MiB duckdb ------------------------------ 701.61 KiB/19.27 MiB playwright ------------------------------ 48.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) flask ------------------------------ 100.88 KiB/100.88 KiB urllib3 ------------------------------ 109.40 KiB/125.66 KiB jinja2 ------------------------------ 110.76 KiB/131.74 KiB werkzeug ------------------------------ 141.69 KiB/219.24 KiB python-dateutil ------------------------------ 224.50 KiB/224.50 KiB pytest ------------------------------ 139.19 KiB/335.58 KiB greenlet ------------------------------ 511.59 KiB/589.71 KiB pyright ------------------------------ 382.91 KiB/5.31 MiB ruff ------------------------------ 572.68 KiB/11.02 MiB duckdb ------------------------------ 701.61 KiB/19.27 MiB playwright ------------------------------ 48.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) urllib3 ------------------------------ 125.66 KiB/125.66 KiB jinja2 ------------------------------ 126.76 KiB/131.74 KiB werkzeug ------------------------------ 141.69 KiB/219.24 KiB python-dateutil ------------------------------ 224.50 KiB/224.50 KiB pytest ------------------------------ 171.19 KiB/335.58 KiB greenlet ------------------------------ 543.59 KiB/589.71 KiB pyright ------------------------------ 456.56 KiB/5.31 MiB ruff ------------------------------ 652.68 KiB/11.02 MiB duckdb ------------------------------ 797.61 KiB/19.27 MiB playwright ------------------------------ 48.00 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) urllib3 ------------------------------ 125.66 KiB/125.66 KiB jinja2 ------------------------------ 126.76 KiB/131.74 KiB werkzeug ------------------------------ 157.69 KiB/219.24 KiB pytest ------------------------------ 187.19 KiB/335.58 KiB greenlet ------------------------------ 543.59 KiB/589.71 KiB pyright ------------------------------ 536.56 KiB/5.31 MiB ruff ------------------------------ 716.68 KiB/11.02 MiB duckdb ------------------------------ 877.61 KiB/19.27 MiB playwright ------------------------------ 61.26 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) urllib3 ------------------------------ 125.66 KiB/125.66 KiB jinja2 ------------------------------ 126.76 KiB/131.74 KiB werkzeug ------------------------------ 157.69 KiB/219.24 KiB pytest ------------------------------ 187.19 KiB/335.58 KiB greenlet ------------------------------ 543.59 KiB/589.71 KiB pyright ------------------------------ 584.56 KiB/5.31 MiB ruff ------------------------------ 748.68 KiB/11.02 MiB duckdb ------------------------------ 909.61 KiB/19.27 MiB playwright ------------------------------ 61.26 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) jinja2 ------------------------------ 131.74 KiB/131.74 KiB werkzeug ------------------------------ 157.69 KiB/219.24 KiB pytest ------------------------------ 187.19 KiB/335.58 KiB greenlet ------------------------------ 543.59 KiB/589.71 KiB pyright ------------------------------ 600.56 KiB/5.31 MiB ruff ------------------------------ 780.68 KiB/11.02 MiB duckdb ------------------------------ 925.61 KiB/19.27 MiB playwright ------------------------------ 61.26 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) werkzeug ------------------------------ 157.69 KiB/219.24 KiB pytest ------------------------------ 203.19 KiB/335.58 KiB greenlet ------------------------------ 559.59 KiB/589.71 KiB pyright ------------------------------ 664.56 KiB/5.31 MiB ruff ------------------------------ 844.68 KiB/11.02 MiB duckdb ------------------------------ 989.61 KiB/19.27 MiB playwright ------------------------------ 77.26 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) pytest ------------------------------ 251.19 KiB/335.58 KiB greenlet ------------------------------ 575.59 KiB/589.71 KiB pyright ------------------------------ 1.16 MiB/5.31 MiB ruff ------------------------------ 1.32 MiB/11.02 MiB duckdb ------------------------------ 1.47 MiB/19.27 MiB playwright ------------------------------ 109.26 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) pytest ------------------------------ 251.19 KiB/335.58 KiB greenlet ------------------------------ 589.71 KiB/589.71 KiB pyright ------------------------------ 1.23 MiB/5.31 MiB ruff ------------------------------ 1.40 MiB/11.02 MiB duckdb ------------------------------ 1.53 MiB/19.27 MiB playwright ------------------------------ 109.26 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) pytest ------------------------------ 271.19 KiB/335.58 KiB pyright ------------------------------ 1.32 MiB/5.31 MiB ruff ------------------------------ 1.49 MiB/11.02 MiB duckdb ------------------------------ 1.64 MiB/19.27 MiB playwright ------------------------------ 157.26 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) pyright ------------------------------ 1.78 MiB/5.31 MiB ruff ------------------------------ 2.07 MiB/11.02 MiB duckdb ------------------------------ 2.25 MiB/19.27 MiB playwright ------------------------------ 717.26 KiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) pyright ------------------------------ 1.79 MiB/5.31 MiB ruff ------------------------------ 2.44 MiB/11.02 MiB duckdb ------------------------------ 2.63 MiB/19.27 MiB playwright ------------------------------ 1.09 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (10/33) pyright ------------------------------ 1.84 MiB/5.31 MiB ruff ------------------------------ 3.77 MiB/11.02 MiB duckdb ------------------------------ 3.92 MiB/19.27 MiB playwright ------------------------------ 2.43 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 1.90 MiB/5.31 MiB ruff ------------------------------ 5.12 MiB/11.02 MiB duckdb ------------------------------ 5.31 MiB/19.27 MiB playwright ------------------------------ 3.78 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 1.97 MiB/5.31 MiB ruff ------------------------------ 6.53 MiB/11.02 MiB duckdb ------------------------------ 6.71 MiB/19.27 MiB playwright ------------------------------ 5.19 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.05 MiB/5.31 MiB ruff ------------------------------ 8.05 MiB/11.02 MiB duckdb ------------------------------ 8.23 MiB/19.27 MiB playwright ------------------------------ 6.73 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.11 MiB/5.31 MiB ruff ------------------------------ 9.52 MiB/11.02 MiB duckdb ------------------------------ 9.64 MiB/19.27 MiB playwright ------------------------------ 8.22 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.14 MiB/5.31 MiB ruff ------------------------------ 10.89 MiB/11.02 MiB duckdb ------------------------------ 11.03 MiB/19.27 MiB playwright ------------------------------ 9.57 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.14 MiB/5.31 MiB duckdb ------------------------------ 11.20 MiB/19.27 MiB playwright ------------------------------ 9.75 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.19 MiB/5.31 MiB duckdb ------------------------------ 12.94 MiB/19.27 MiB playwright ------------------------------ 11.54 MiB/43.05 MiB Building scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.22 MiB/5.31 MiB duckdb ------------------------------ 15.11 MiB/19.27 MiB playwright ------------------------------ 13.70 MiB/43.05 MiB Built scubaduck @ file:///workspace/scubaduck Preparing packages... (28/33) pyright ------------------------------ 2.25 MiB/5.31 MiB duckdb ------------------------------ 16.70 MiB/19.27 MiB playwright ------------------------------ 15.25 MiB/43.05 MiB Preparing packages... (28/33) pyright ------------------------------ 2.25 MiB/5.31 MiB duckdb ------------------------------ 17.09 MiB/19.27 MiB playwright ------------------------------ 15.67 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.30 MiB/5.31 MiB duckdb ------------------------------ 19.00 MiB/19.27 MiB playwright ------------------------------ 17.58 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.38 MiB/5.31 MiB playwright ------------------------------ 19.50 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.39 MiB/5.31 MiB playwright ------------------------------ 20.80 MiB/43.05 MiB Preparing packages... (30/33) pyright ------------------------------ 2.44 MiB/5.31 MiB playwright ------------------------------ 25.64 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.58 MiB/5.31 MiB playwright ------------------------------ 27.34 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.68 MiB/5.31 MiB playwright ------------------------------ 29.00 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.78 MiB/5.31 MiB playwright ------------------------------ 30.97 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 2.91 MiB/5.31 MiB playwright ------------------------------ 32.51 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 3.09 MiB/5.31 MiB playwright ------------------------------ 34.47 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 3.22 MiB/5.31 MiB playwright ------------------------------ 36.06 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 3.35 MiB/5.31 MiB playwright ------------------------------ 37.96 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 3.53 MiB/5.31 MiB playwright ------------------------------ 39.58 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 3.69 MiB/5.31 MiB playwright ------------------------------ 40.98 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 3.89 MiB/5.31 MiB playwright ------------------------------ 42.15 MiB/43.05 MiB Preparing packages... (31/33) pyright ------------------------------ 4.02 MiB/5.31 MiB Preparing packages... (31/33) pyright ------------------------------ 4.25 MiB/5.31 MiB Preparing packages... (31/33) pyright ------------------------------ 4.49 MiB/5.31 MiB Preparing packages... (31/33) Prepared 33 packages in 1.58s ░░░░░░░░░░░░░░░░░░░░ [0/0] Installing wheels... ░░░░░░░░░░░░░░░░░░░░ [0/33] Installing wheels... ░░░░░░░░░░░░░░░░░░░░ [0/33] python-slugify==8.0.4 ░░░░░░░░░░░░░░░░░░░░ [1/33] python-slugify==8.0.4 ░░░░░░░░░░░░░░░░░░░░ [1/33] execnet==2.1.1 █░░░░░░░░░░░░░░░░░░░ [2/33] execnet==2.1.1 █░░░░░░░░░░░░░░░░░░░ [2/33] six==1.17.0 █░░░░░░░░░░░░░░░░░░░ [3/33] six==1.17.0 █░░░░░░░░░░░░░░░░░░░ [3/33] click==8.2.0 ██░░░░░░░░░░░░░░░░░░ [4/33] click==8.2.0 ██░░░░░░░░░░░░░░░░░░ [4/33] typing-extensions==4.13.2 ███░░░░░░░░░░░░░░░░░ [5/33] typing-extensions==4.13.2 ███░░░░░░░░░░░░░░░░░ [5/33] blinker==1.9.0 ███░░░░░░░░░░░░░░░░░ [6/33] blinker==1.9.0 ███░░░░░░░░░░░░░░░░░ [6/33] idna==3.10 ████░░░░░░░░░░░░░░░░ [7/33] idna==3.10 ████░░░░░░░░░░░░░░░░ [7/33] requests==2.32.3 ████░░░░░░░░░░░░░░░░ [8/33] requests==2.32.3 ████░░░░░░░░░░░░░░░░ [8/33] pytest-base-url==2.1.0 █████░░░░░░░░░░░░░░░ [9/33] pytest-base-url==2.1.0 ███████████████████░ [32/33] pyright==1.1.400 Installed 33 packages in 81ms + blinker==1.9.0 + certifi==2025.4.26 + charset-normalizer==3.4.2 + click==8.2.0 + duckdb==1.2.2 + execnet==2.1.1 + flask==3.1.1 + greenlet==3.2.2 + idna==3.10 + iniconfig==2.1.0 + itsdangerous==2.2.0 + jinja2==3.1.6 + markupsafe==3.0.2 + nodeenv==1.9.1 + packaging==25.0 + playwright==1.52.0 + pluggy==1.6.0 + pyee==13.0.0 + pyright==1.1.400 + pytest==8.3.5 + pytest-base-url==2.1.0 + pytest-playwright==0.7.0 + pytest-xdist==3.6.1 + python-dateutil==2.9.0.post0 + python-slugify==8.0.4 + requests==2.32.3 + ruff==0.11.10 + scubaduck==0.1.0 (from file:///workspace/scubaduck) + six==1.17.0 + text-unidecode==1.3 + typing-extensions==4.13.2 + urllib3==2.4.0 + werkzeug==3.1.3 ++ source .venv/bin/activate +++ '[' -z '' ']' +++ '[' -n x ']' +++ SCRIPT_PATH=.venv/bin/activate +++ '[' .venv/bin/activate = /tmp/o8Ni9g-setup_script.sh ']' +++ deactivate nondestructive +++ unset -f pydoc +++ '[' -z '' ']' +++ '[' -z '' ']' +++ hash -r +++ '[' -z '' ']' +++ unset VIRTUAL_ENV +++ unset VIRTUAL_ENV_PROMPT +++ '[' '!' nondestructive = nondestructive ']' +++ VIRTUAL_ENV=/workspace/scubaduck/.venv +++ '[' linux-gnu = cygwin ']' +++ '[' linux-gnu = msys ']' +++ export VIRTUAL_ENV +++ '[' -z '' ']' +++ unset SCRIPT_PATH +++ _OLD_VIRTUAL_PATH=/root/.cargo/bin:/root/.rbenv/shims:/root/.rbenv/bin:/root/.rbenv/shims:/root/.local/share/swiftly/bin:/root/.bun/bin:/root/.nvm/versions/node/v22.15.1/bin:/root/.pyenv/shims:3441PYENV_ROOT/shims:/root/.pyenv/bin:/usr/local/go/bin:/root/go/bin:/root/.rbenv/bin:/root/.rbenv/shims:/root/.bun/bin:/root/.local/bin:/root/.pyenv/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin +++ PATH=/workspace/scubaduck/.venv/bin:/root/.cargo/bin:/root/.rbenv/shims:/root/.rbenv/bin:/root/.rbenv/shims:/root/.local/share/swiftly/bin:/root/.bun/bin:/root/.nvm/versions/node/v22.15.1/bin:/root/.pyenv/shims:3441PYENV_ROOT/shims:/root/.pyenv/bin:/usr/local/go/bin:/root/go/bin:/root/.rbenv/bin:/root/.rbenv/shims:/root/.bun/bin:/root/.local/bin:/root/.pyenv/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin +++ export PATH +++ '[' xscubaduck '!=' x ']' +++ VIRTUAL_ENV_PROMPT='(scubaduck) ' +++ export VIRTUAL_ENV_PROMPT +++ '[' -z '' ']' +++ '[' -z '' ']' +++ _OLD_VIRTUAL_PS1= +++ PS1='(scubaduck) ' +++ export PS1 +++ alias pydoc +++ true +++ hash -r ++ playwright install chromium Downloading Chromium 136.0.7103.25 (playwright build v1169) from https://cdn.playwright.dev/dbazure/download/playwright/builds/chromium/1169/chromium-linux.zip 167.7 MiB [] 0% 0.0s167.7 MiB [] 0% 25.5s167.7 MiB [] 0% 21.7s167.7 MiB [] 0% 11.1s167.7 MiB [] 1% 7.0s167.7 MiB [] 1% 4.5s167.7 MiB [] 2% 4.4s167.7 MiB [] 3% 3.5s167.7 MiB [] 4% 3.1s167.7 MiB [] 5% 2.8s167.7 MiB [] 5% 2.7s167.7 MiB [] 6% 2.7s167.7 MiB [] 7% 2.6s167.7 MiB [] 8% 2.4s167.7 MiB [] 9% 2.3s167.7 MiB [] 9% 2.4s167.7 MiB [] 11% 2.3s167.7 MiB [] 13% 1.9s167.7 MiB [] 15% 1.8s167.7 MiB [] 16% 1.7s167.7 MiB [] 18% 1.6s167.7 MiB [] 19% 1.5s167.7 MiB [] 21% 1.5s167.7 MiB [] 22% 1.4s167.7 MiB [] 24% 1.3s167.7 MiB [] 26% 1.2s167.7 MiB [] 27% 1.2s167.7 MiB [] 29% 1.2s167.7 MiB [] 30% 1.1s167.7 MiB [] 32% 1.0s167.7 MiB [] 34% 1.0s167.7 MiB [] 36% 1.0s167.7 MiB [] 38% 0.9s167.7 MiB [] 39% 0.9s167.7 MiB [] 41% 0.8s167.7 MiB [] 43% 0.8s167.7 MiB [] 44% 0.8s167.7 MiB [] 45% 0.7s167.7 MiB [] 46% 0.7s167.7 MiB [] 47% 0.7s167.7 MiB [] 48% 0.7s167.7 MiB [] 49% 0.7s167.7 MiB [] 50% 0.7s167.7 MiB [] 51% 0.7s167.7 MiB [] 52% 0.7s167.7 MiB [] 53% 0.7s167.7 MiB [] 55% 0.6s167.7 MiB [] 57% 0.6s167.7 MiB [] 58% 0.6s167.7 MiB [] 59% 0.6s167.7 MiB [] 61% 0.5s167.7 MiB [] 62% 0.5s167.7 MiB [] 63% 0.5s167.7 MiB [] 65% 0.5s167.7 MiB [] 66% 0.5s167.7 MiB [] 68% 0.4s167.7 MiB [] 70% 0.4s167.7 MiB [] 71% 0.4s167.7 MiB [] 72% 0.4s167.7 MiB [] 73% 0.4s167.7 MiB [] 74% 0.3s167.7 MiB [] 76% 0.3s167.7 MiB [] 77% 0.3s167.7 MiB [] 80% 0.3s167.7 MiB [] 82% 0.2s167.7 MiB [] 84% 0.2s167.7 MiB [] 86% 0.2s167.7 MiB [] 88% 0.1s167.7 MiB [] 90% 0.1s167.7 MiB [] 93% 0.1s167.7 MiB [] 95% 0.1s167.7 MiB [] 97% 0.0s167.7 MiB [] 99% 0.0s167.7 MiB [] 100% 0.0s Chromium 136.0.7103.25 (playwright build v1169) downloaded to /root/.cache/ms-playwright/chromium-1169 Downloading FFMPEG playwright build v1011 from https://cdn.playwright.dev/dbazure/download/playwright/builds/ffmpeg/1011/ffmpeg-linux.zip 2.3 MiB [] 0% 0.0s2.3 MiB [] 2% 0.9s2.3 MiB [] 21% 0.1s2.3 MiB [] 49% 0.1s2.3 MiB [] 100% 0.0s FFMPEG playwright build v1011 downloaded to /root/.cache/ms-playwright/ffmpeg-1011 Downloading Chromium Headless Shell 136.0.7103.25 (playwright build v1169) from https://cdn.playwright.dev/dbazure/download/playwright/builds/chromium/1169/chromium-headless-shell-linux.zip 101.4 MiB [] 0% 0.0s101.4 MiB [] 0% 16.2s101.4 MiB [] 0% 10.2s101.4 MiB [] 0% 6.4s101.4 MiB [] 1% 4.7s101.4 MiB [] 3% 2.6s101.4 MiB [] 3% 2.7s101.4 MiB [] 5% 2.0s101.4 MiB [] 7% 1.7s101.4 MiB [] 8% 1.7s101.4 MiB [] 8% 1.8s101.4 MiB [] 10% 1.7s101.4 MiB [] 11% 1.5s101.4 MiB [] 13% 1.4s101.4 MiB [] 15% 1.3s101.4 MiB [] 18% 1.1s101.4 MiB [] 21% 1.0s101.4 MiB [] 23% 0.9s101.4 MiB [] 27% 0.8s101.4 MiB [] 29% 0.7s101.4 MiB [] 34% 0.6s101.4 MiB [] 36% 0.6s101.4 MiB [] 40% 0.5s101.4 MiB [] 44% 0.5s101.4 MiB [] 46% 0.5s101.4 MiB [] 50% 0.4s101.4 MiB [] 52% 0.4s101.4 MiB [] 54% 0.4s101.4 MiB [] 57% 0.3s101.4 MiB [] 61% 0.3s101.4 MiB [] 63% 0.3s101.4 MiB [] 66% 0.3s101.4 MiB [] 69% 0.2s101.4 MiB [] 70% 0.2s101.4 MiB [] 70% 0.3s101.4 MiB [] 74% 0.2s101.4 MiB [] 78% 0.2s101.4 MiB [] 84% 0.1s101.4 MiB [] 88% 0.1s101.4 MiB [] 91% 0.1s101.4 MiB [] 95% 0.0s101.4 MiB [] 98% 0.0s101.4 MiB [] 100% 0.0s Chromium Headless Shell 136.0.7103.25 (playwright build v1169) downloaded to /root/.cache/ms-playwright/chromium_headless_shell-1169 ++ echo 'source .venv/bin/activate'
Internet turned off
This fails: 1. Go to Time Series 2. Add a numeric Derived Column derived_1 with "value * 2" 3. Dive It fails with: Binder Error: column "value" must appear in the GROUP BY clause or must be part of an aggregate function. Either add it to the GROUP BY list, or use "ANY_VALUE(value)" if the exact value of "value" is not important. LINE 1: ...) AS bucket, user, count(*) AS Hits, avg(value) AS value, value * 2 AS derived_1 FROM events GROUP BY bucket, user... ^ SQL: SELECT TIMESTAMP 'epoch' + INTERVAL '3600 second' * CAST(floor(epoch(timestamp)/3600) AS BIGINT) AS bucket, user, count(*) AS Hits, avg(value) AS value, value * 2 AS derived_1 FROM events GROUP BY bucket, user ORDER BY bucket LIMIT 7 Traceback (most recent call last): File "/Users/ezyang/Dev/scubaduck/scubaduck/server.py", line 408, in query rows = con.execute(sql).fetchall() ^^^^^^^^^^^^^^^^ duckdb.duckdb.BinderException: Binder Error: column "value" must appear in the GROUP BY clause or must be part of an aggregate function. Either add it to the GROUP BY list, or use "ANY_VALUE(value)" if the exact value of "value" is not important. LINE 1: ...) AS bucket, user, count(*) AS Hits, avg(value) AS value, value * 2 AS derived_1 FROM events GROUP BY bucket, user... ^ It seems likely the problem is the avg(value) shouldn't get aliased as value, it needs to get a dedicated, generated name that will never conflict with column names. Add this test, show it fails, and then fix it.

I'll look for AGENTS.md in the root of the repository.

shell
bash: .venv/bin/activate: No such file or directory root@75b162e381df:/workspace# ls scubaduck
root@75b162e381df:/workspace# cd scubaduck root@75b162e381df:/workspace/scubaduck# ls AGENTS.md codex_setup.sh scubaduck tests README.md pyproject.toml stubs uv.lock
root@75b162e381df:/workspace/scubaduck# cat AGENTS.md - Use "source .venv/bin/activate" to activate the virtual environment before running any commands - ONLY use non-interactive commands like cat, sed, apply_patch to do edits. Do NOT use interactive editors. - Do NOT attempt to install packages. Only the packages specified in pyproject.toml are available. You cannot add new packages. If you desperately want another package, make a note of it in the final PR description. - Use conventional commits to format PR title - There are no nested AGENTS.md files, this is the only agents file - When using Playwright, ONLY use chromium browser. This browser is already installed. - Use "ruff check" to check lint, "ruff format" to autoformat files and "pyright" to typecheck. - When writing the PR description, include the original prompt supplied by the user. - When you add functionality to the server, add server tests to tests/test_server.py. When you add features to the frontend, add frontend tests to tests/test_web.py

AGENTS says to activate a venv before running commands like ruff check and pyright.

shell
root@75b162e381df:/workspace/scubaduck# cat README.md I really like Scuba (Meta's internal real-time database system). The distributed , real-time database part of Scuba is quite difficult (and expensive) to replica te, but I also really like Scuba's UI for doing queries, and I have found myself wishing that I have access to it even for "small" databases, e.g., I have a sql ite dataset I want to explore. Pivotal ideas: * Time series by default. In the dedicated "time series" view, there are many fe atures specifically oriented towards working towards tables that represent event s that occurred over time: the start, end, compare, aggregate and granularity fi elds all specially privilege the timestamp field. In fact, you can't log events to Scuba's backing data store without a timestamp, they always come with one. (S cuba also supports other views that don't presuppose a time series, but the time series is the most beloved and well used view.) This is in contrast to typical software which tries to generalize to arbitrary data first, with time series bei ng added on later. * It's all about exploration. Scuba is predicated on the idea that you don't kno w what you're looking for, that you are going to spend time tweaking queries and changing filters/grouping as part of an investigation to figure out why a syste m behaves the way it is. So the filters/comparisons/groupings you want to edit a re always visible on the left sidebar, with the expectation that you're going to tweak the query to look at something else. Similarly, all the parameters of you r query get saved into your URL, so your browser history can double up as a quer y history / you can easily share a query with someone else. This is contrast to typical software which is often oriented to making pretty dashboards and reports . (This function is important too, but it's not what I want in exploration mode! ) * You can fix data problems in the query editor. It's pretty common to have mess ed up and ended up with a database that doesn't have exactly the columns you nee d, or some columns that are corrupted in some way. Scuba has pretty robust suppo rt for defining custom columns with arbitrary SQL functions, grouping over them as if they were native functions, and doing so with minimal runtime cost (Scuba aims to turn around your query in milliseconds!) Having to go and run a huge dat a pipeline to fix your data is a big impediment to exploration; quick and easy c ustom columns means you can patch over problems when you're investigating and fi x them for real later. We're going to build a exploratory data analysis tool like Scuba for time series database (i.e., a database with a mandatory timestamp representing the time an event occurred). We'll use DuckDB as the underlying SQL engine served from a Py thon server, and render the GUI/results as a webpage with vanilla HTML and JS. W e'll use choices.js to support token inputs. We define a token input to mean a text input element where as you type a dropdown displays with valid values, and if you select one or press enter, the selection turns into a token/chip that can only be deleted as one unit. To start, we are going to support one views: samples. The samples view only all ows you to view individual samples from the database, subject to a filter. Our m ain UI concept is that there is a left sidebar that is the query editor, and the right side that shows the view. The sidebar is always visible and defaults to the query parameters of the current view. After you make changes to the query, clicking the "Dive" button updates the view. The URL of the page encodes all of the values of the query (and gets updated when you Dive), so the browser's back button lets you view previous queries. The query editor's job is to generate a SQL query, which then is applied on the database, and then the result visualized according to the view. Here are the settings you can apply to the query. The help text should show up w hen you mouse over the field name: * Start/End - Help text: "Sets the start/end of the time range to query. Can be any kind of datetime string. For example: 'April 23, 2014' or 'yesterday'." The UI for this selector supports both relative selections (now, -1 hour, -3 hours, -12 hours, -1 day, -3 days, -1 week, -1 fortnight, -30 days, -90 days) as well a s specifying an absolute date. The way this field is rendered is there is a fre e form text box, a drop down arrow (for the relative selectors), and then a cale ndar button (for date selection). * Order By - Help text: "Choose a column to sort results by." There is an ASC/D ESC toggle next to it. * Limit - Help text: "Choose the maximum number of results to show in the chart after any aggregations have been applied. For example, a limit of 10 will show no more than 10 rows for a table, etc." * Filters - You can create as many filters as you want. You can either write a f ilter using a UI or manual SQL. In the UI, filter consists of a column name, a r elation (e.g., =, !=, <, >) and then a text field. The text field is a token inp ut. It accepts multiple tokens for = relation, in which case we match using an O R for all options. There is also a "Columns" tab which lets you view all fields in the table, organ ized by their type. You can also define derived columns, by specifying a column name and SQL expression. Derived columns can be used for all parts of the UI, in cluding filters/group by/etc. Columns have checkboxes indicating if we should SE LECT them or not. Each selected column shows up in the graph. There is an All/N one link which can be used to select/deselect all checkboxes. The query UI constructs a SQL query that intuitively has this form: ``` SELECT column, column, ..., FROM table WHERE time >= min-timestamp AND time <= max-timestamp [AND condition ...] ORDER BY aggregate(column) LIMIT number ``` You should write tests for the server backend, demonstrating that at specific qu ery values we get back the correct rows of data.

I'll check the rest of the README to make sure I have all the details.

shell
root@75b162e381df:/workspace/scubaduck# ^C
root@75b162e381df:/workspace/scubaduck# grep -n "View" -n README.md

I’ll check out the tests/test_server.py and test_web files in the tests directory.

shell
root@75b162e381df:/workspace/scubaduck# ls tests conftest.py test_server.py test_web.py
root@75b162e381df:/workspace/scubaduck# cat tests/test_server.py from __future__ import annotations import json from pathlib import Path import duckdb from scubaduck import server import pytest def test_basic_query() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-02 00:00:00", "order_by": "timestamp", "order_dir": "ASC", "limit": 10, "columns": ["timestamp", "event", "value", "user"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert data rows = data["rows"] # We expect first three rows (until 2024-01-02 00:00:00) assert len(rows) == 3 assert rows[0][1] == "login" assert rows[1][1] == "logout" def test_js_served() -> None: app = server.app client = app.test_client() rv = client.get("/js/chip_input.js") assert rv.status_code == 200 assert b"initChipInput" in rv.data def test_filter_multi_token() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-02 03:00:00", "order_by": "timestamp", "limit": 10, "columns": ["timestamp", "event", "value", "user"], "filters": [{"column": "user", "op": "=", "value": ["alice", "charlie"]} ], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert data rows = data["rows"] # Should only return rows for alice and charlie assert len(rows) == 3 assert rows[0][3] == "alice" assert rows[-1][3] == "charlie" def test_empty_filter_is_noop() -> None: app = server.app client = app.test_client() base_payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "limit": 100, "columns": ["timestamp", "event", "value", "user"], } no_filter = {**base_payload, "filters": []} empty_filter = { **base_payload, "filters": [{"column": "user", "op": "=", "value": None}], } rv1 = client.post( "/api/query", data=json.dumps(no_filter), content_type="application/json " ) rv2 = client.post( "/api/query", data=json.dumps(empty_filter), content_type="application/j son" ) rows1 = rv1.get_json()["rows"] rows2 = rv2.get_json()["rows"] assert rows1 == rows2 def test_select_columns() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "order_by": "timestamp", "limit": 10, "columns": ["timestamp", "user"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert data rows = data["rows"] assert len(rows[0]) == 2 assert rows[0][1] == "alice" def test_string_filter_ops() -> None: app = server.app client = app.test_client() base = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "order_by": "timestamp", "limit": 100, ... app = server.app client = app.test_client() payload = { "graph_type": "samples", "group_by": ["user"], "columns": ["timestamp"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "only valid" in data["error"] def test_table_avg_with_timestamp() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "order_by": "user", "limit": 100, "columns": ["user", "timestamp", "value"], "group_by": ["user"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert "error" not in data rows = data["rows"] assert rows[0][0] == "alice" from dateutil import parser ts = parser.parse(rows[0][1]).replace(tzinfo=None) assert ts == parser.parse("2024-01-01 12:00:00") def test_timeseries_basic() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "limit": 100, "group_by": ["user"], "aggregate": "Count", "columns": ["value"], "x_axis": "timestamp", "granularity": "1 day", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 4 def test_timeseries_orders_by_xaxis() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "limit": 100, "columns": ["value"], "x_axis": "timestamp", "granularity": "1 day", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 rows = data["rows"] from dateutil import parser timestamps = [parser.parse(r[0]).replace(tzinfo=None) for r in rows] assert timestamps == sorted(timestamps) def test_timeseries_string_column_error() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "limit": 7, "columns": ["timestamp", "event", "value", "user"], "x_axis": "timestamp", "granularity": "1 hour", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "Aggregate" in data["error"] def test_derived_column_basic() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "limit": 10, "columns": ["timestamp"], "derived_columns": {"val2": "value * 2"}, "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["rows"][0][1] == 20

I'll keep scrolling to check if there's more past 203 lines.

shell
root@75b162e381df:/workspace/scubaduck# sed -n '200,400p' tests/test_server.py assert len(rows) == 3 def test_group_by_table() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "order_by": "user", "limit": 10, "columns": ["value"], "group_by": ["user"], "aggregate": "Sum", "show_hits": True, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) rows = rv.get_json()["rows"] assert rows[0][0] == "alice" assert rows[0][1] == 2 assert rows[0][2] == 40 def test_relative_time_query(monkeypatch: pytest.MonkeyPatch) -> None: app = server.app client = app.test_client() from datetime import datetime fixed_now = datetime(2024, 1, 2, 4, 0, 0) class FixedDateTime(datetime): @classmethod def now(cls, tz=None): # type: ignore[override] return fixed_now if tz is None else fixed_now.astimezone(tz) monkeypatch.setattr(server, "datetime", FixedDateTime) payload = { "start": "-1 hour", "end": "now", "order_by": "timestamp", "limit": 100, "columns": ["timestamp", "event", "value", "user"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 1 assert data["rows"][0][3] == "charlie" def test_invalid_time_error() -> None: app = server.app client = app.test_client() payload = { "start": "nonsense", "end": "now", "order_by": "timestamp", "limit": 10, "columns": ["timestamp"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "error" in data def test_query_error_returns_sql_and_traceback() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "columns": ["event"], "group_by": ["user"], "aggregate": "avg", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "error" in data def test_table_unknown_column_error() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "order_by": "timestamp", "limit": 100, "columns": ["user", "Hits", "value"], "group_by": ["user"], "aggregate": "Count", "show_hits": True, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "Unknown column" in data["error"] def test_samples_view_rejects_group_by() -> None: app = server.app client = app.test_client() payload = { "graph_type": "samples", "group_by": ["user"], "columns": ["timestamp"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "only valid" in data["error"] def test_table_avg_with_timestamp() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "order_by": "user", "limit": 100, "columns": ["user", "timestamp", "value"], "group_by": ["user"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert "error" not in data rows = data["rows"] assert rows[0][0] == "alice" from dateutil import parser ts = parser.parse(rows[0][1]).replace(tzinfo=None) assert ts == parser.parse("2024-01-01 12:00:00") def test_timeseries_basic() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "limit": 100, "group_by": ["user"], "aggregate": "Count", "columns": ["value"], "x_axis": "timestamp", "granularity": "1 day", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 4 def test_timeseries_orders_by_xaxis() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "limit": 100, "columns": ["value"], "x_axis": "timestamp", "granularity": "1 day", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 rows = data["rows"] from dateutil import parser

I need to keep going to reach the bottom lines.

shell
root@75b162e381df:/workspace/scubaduck# wc -l tests/test_server.py 441 tests/test_server.py

I’ll open test_web now after checking the 441 lines and duplicates I found.

shell
select_value(page, "#order_by", order_by) if order_dir is not None and order_dir == "DESC": page.click("#order_dir") if limit is not None: page.fill("#limit", str(limit)) if group_by is not None: select_value(page, "#graph_type", "table") page.evaluate( "g => { groupBy.chips = g; groupBy.renderChips(); }", group_by, ) if aggregate is not None: select_value(page, "#graph_type", "table") select_value(page, "#aggregate", aggregate) page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") return page.evaluate("window.lastResults") def test_range_filters(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-02 00:00:00", end="2024-01-02 04:00:00", order_by="timestamp", limit=100, ) assert len(data["rows"]) == 2 from dateutil import parser timestamps = [parser.parse(row[0]).replace(tzinfo=None) for row in data["row s"]] assert timestamps == [ parser.parse("2024-01-02 00:00:00"), parser.parse("2024-01-02 03:00:00"), ] def test_order_by(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="value", order_dir="DESC", limit=100, ) values = [row[2] for row in data["rows"]] assert values == sorted(values, reverse=True) def test_limit(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="timestamp", limit=2, ) assert len(data["rows"]) == 2 def test_simple_filter(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Add Filter") filter_el = page.query_selector("#filters .filter:last-child") assert filter_el page.evaluate( "arg => setSelectValue(arg.el.querySelector('.f-col'), arg.val)", {"el": filter_el, "val": "user"}, ) val_input = filter_el.query_selector(".f-val") val_input.click() page.keyboard.type("alice") page.keyboard.press("Enter") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") data = page.evaluate("window.lastResults") assert len(data["rows"]) == 2 assert all(row[3] == "alice" for row in data["rows"]) def test_default_filter_and_layout(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") count = page.evaluate("document.querySelectorAll('#filters .filter').length" ) assert count == 1 last_is_button = page.evaluate( "document.querySelector('#filters').lastElementChild.id === 'add_filter' " ) assert last_is_button position = page.evaluate( "getComputedStyle(document.querySelector('#filters .filter button.remove ')).position" ) assert position == "static" def test_filter_remove_alignment(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") diff = page.evaluate( "() => { const r=document.querySelector('#filters .filter-row').getBound ingClientRect(); const x=document.querySelector('#filters .filter-row button.rem ove').getBoundingClientRect(); return Math.abs(r.right - x.right); }" ) assert diff <= 1 def test_header_and_tabs(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") header = page.text_content("#header") assert "sample.csv" in header assert "events" in header ... data = run_query( page, server_url, start="2025-01-01 00:00:00", end="2025-01-02 00:00:00", order_by="timestamp", limit=100, ) assert data["rows"] == [] msg = page.text_content("#view") assert "Empty data provided to table" in msg def test_group_by_chip_from_url(page: Any, server_url: str) -> None: url = f"{server_url}?graph_type=table&group_by=user&order_by=user&limit=10" page.goto(url) page.wait_for_selector("#group_by_field .chip", state="attached") chips = page.evaluate( "Array.from(document.querySelectorAll('#group_by_field .chip')).map(c => c.firstChild.textContent)" ) assert chips == ["user"] def test_group_by_autocomplete(page: Any, server_url: str) -> None: page.goto(f"{server_url}?graph_type=table") page.wait_for_selector("#group_by_field", state="visible") inp = page.query_selector("#group_by_field .f-val") assert inp inp.click() page.keyboard.type("us") page.wait_for_selector("#group_by_field .chip-dropdown div") options = page.locator("#group_by_field .chip-dropdown div").all_inner_texts () assert "user" in options def test_group_by_copy_icon(page: Any, server_url: str) -> None: page.goto(f"{server_url}?graph_type=table") page.wait_for_selector("#group_by_field", state="visible") icon = page.text_content("#group_by_field .chip-copy") assert icon == "⎘" def test_group_by_input_no_border(page: Any, server_url: str) -> None: page.goto(f"{server_url}?graph_type=table") page.wait_for_selector("#group_by_field", state="visible") border = page.evaluate( "getComputedStyle(document.querySelector('#group_by_field .f-val')).bord erStyle" ) assert border == "none" def test_table_group_by_query(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="timestamp", limit=100, group_by=["user"], aggregate="Count", ) assert "error" not in data assert len(data["rows"]) == 3 def test_table_avg_no_group_by(page: Any, server_url: str) -> None: data = run_query( page, server_url, aggregate="Avg", ) assert len(data["rows"]) == 1 row = data["rows"][0] assert row[0] == 4 from dateutil import parser ts = parser.parse(row[1]).replace(tzinfo=None) assert ts == parser.parse("2024-01-01 13:00:00") assert row[2] == 25 def test_table_headers_show_aggregate(page: Any, server_url: str) -> None: run_query( page, server_url, aggregate="Avg", ) headers = page.locator("#results th").all_inner_texts() assert "Hits" in headers assert "timestamp (avg)" in headers assert "value (avg)" in headers def test_format_number_function(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") vals = page.evaluate( "() => [formatNumber(815210), formatNumber(999.999), formatNumber(0.0004 ), formatNumber(0)]" ) assert vals == ["815.21 K", "999.999", "0.000", "0"] def test_derived_column_query(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Columns") page.click("text=Add Derived") expr = page.query_selector("#derived_list .derived textarea") assert expr expr.fill("value * 2") page.click("text=View Settings") page.fill("#start", "2024-01-01 00:00:00") page.fill("#end", "2024-01-03 00:00:00") page.fill("#limit", "10") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") data = page.evaluate("window.lastResults") assert data["rows"][0][-1] == 20

I’m continuing to page towards the bottom for the information I need.

shell
root@75b162e381df:/workspace/scubaduck# wc -l tests/test_web.py 879 tests/test_web.py

I need to add a test for timeseries views with derived columns, replicating the failure.

shell
root@75b162e381df:/workspace/scubaduck# ls scubaduck __init__.py sample.csv server.py static
import time from pathlib import Path import sqlite3 import traceback import duckdb from dateutil import parser as dtparser from flask import Flask, jsonify, request, send_from_directory @dataclass class Filter: column: str op: str value: str | int | float | list[str] | None @dataclass class QueryParams: start: str | None = None end: str | None = None order_by: str | None = None order_dir: str = "ASC" limit: int | None = None columns: list[str] = field(default_factory=lambda: []) filters: list[Filter] = field(default_factory=lambda: []) derived_columns: dict[str, str] = field(default_factory=lambda: {}) graph_type: str = "samples" group_by: list[str] = field(default_factory=lambda: []) aggregate: str | None = None show_hits: bool = False x_axis: str | None = None granularity: str = "Auto" fill: str = "0" def _load_database(path: Path) -> duckdb.DuckDBPyConnection: ext = path.suffix.lower() if ext == ".csv": con = duckdb.connect() con.execute( f"CREATE TABLE events AS SELECT * FROM read_csv_auto('{path.as_posix ()}')" ) elif ext in {".db", ".sqlite"}: con = duckdb.connect() sconn = sqlite3.connect(path) info = sconn.execute("PRAGMA table_info(events)").fetchall() col_defs = ", ".join(f"{r[1]} {r[2]}" for r in info) con.execute(f"CREATE TABLE events ({col_defs})") placeholders = ",".join("?" for _ in info) for row in sconn.execute("SELECT * FROM events"): con.execute(f"INSERT INTO events VALUES ({placeholders})", row) sconn.close() else: con = duckdb.connect(path) return con _REL_RE = re.compile( r"([+-]?\d+(?:\.\d*)?)\s*(hour|hours|day|days|week|weeks|fortnight|fortnight s)", re.IGNORECASE, ) def parse_time(val: str | None) -> str | None: """Parse an absolute or relative time string into ``YYYY-MM-DD HH:MM:SS``."" " if val is None or val == "": return None s = val.strip() if s.lower() == "now": dt = datetime.now(timezone.utc) return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S") m = _REL_RE.fullmatch(s) if m: qty = float(m.group(1)) unit = m.group(2).lower() delta: timedelta if unit.startswith("hour"): delta = timedelta(hours=qty) elif unit.startswith("day"): delta = timedelta(days=qty) elif unit.startswith("week"): delta = timedelta(weeks=qty) elif unit.startswith("fortnight"): delta = timedelta(weeks=2 * qty) else: # pragma: no cover - defensive raise ValueError(f"Unsupported unit: {unit}") dt = datetime.now(timezone.utc) + delta return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S") dt = dtparser.parse(s) return dt.replace(microsecond=0, tzinfo=None).strftime("%Y-%m-%d %H:%M:%S") def _granularity_seconds(granularity: str, start: str | None, end: str | None) - > int: gran = granularity.lower() mapping = { "1 second": 1, "5 seconds": 5, "10 seconds": 10, "30 seconds": 30, "1 minute": 60, "4 minutes": 240, "5 minutes": 300, "10 minutes": 600, "15 minutes": 900, "30 minutes": 1800, "1 hour": 3600, "3 hours": 10800, "6 hours": 21600, "1 day": 86400, "1 week": 604800, "30 days": 2592000, } if gran in mapping: return mapping[gran] if gran in {"auto", "fine"} and start and end: try: s = dtparser.parse(start) e = dtparser.parse(end) except Exception: return 3600 total = max((e - s).total_seconds(), 1) buckets = 100 if gran == "auto" else 500 return max(int(total // buckets), 1) return 3600 def build_query(params: QueryParams, column_types: Dict[str, str] | None = None) -> str: select_parts: list[str] = [] group_cols = params.group_by[:] if params.graph_type == "timeseries": sec = _granularity_seconds(params.granularity, params.start, params.end) x_axis = params.x_axis or "timestamp" bucket_expr = ( f"TIMESTAMP 'epoch' + INTERVAL '{sec} second' * " f"CAST(floor(epoch({x_axis})/{sec}) AS BIGINT)" ) select_parts.append(f"{bucket_expr} AS bucket") group_cols = ["bucket"] + group_cols has_agg = bool(group_cols) or params.aggregate is not None if has_agg: select_cols = ( group_cols[1:] if params.graph_type == "timeseries" else group_cols ) select_parts.extend(select_cols) agg = (params.aggregate or "avg").lower() def agg_expr(col: str) -> str: if agg.startswith("p"): quant = float(agg[1:]) / 100 return f"quantile({col}, {quant})" if agg == "count distinct": return f"count(DISTINCT {col})" if agg == "avg" and column_types is not None: ctype = column_types.get(col, "").upper() if "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype: return ( "TIMESTAMP 'epoch' + INTERVAL '1 second' * " f"CAST(avg(epoch({col})) AS BIGINT)" ) return f"{agg}({col})" for col in params.columns: if col in group_cols: continue select_parts.append(f"{agg_expr(col)} AS {col}") if params.show_hits: select_parts.insert(len(group_cols), "count(*) AS Hits") else: select_parts.extend(params.columns) for name, expr in params.derived_columns.items(): select_parts.append(f"{expr} AS {name}") select_clause = ", ".join(select_parts) if select_parts else "*" query = f"SELECT {select_clause} FROM events" where_parts: list[str] = [] if params.start: where_parts.append(f"timestamp >= '{params.start}'") if params.end: where_parts.append(f"timestamp <= '{params.end}'") for f in params.filters: op = f.op if op in {"empty", "!empty"}: val = "''" else: if f.value is None: continue if isinstance(f.value, list): if not f.value: continue if op == "=":
if op == "=": vals = " OR ".join(f"{f.column} = '{v}'" for v in f.value) where_parts.append(f"({vals})") continue val = f"'{f.value}'" if isinstance(f.value, str) else str(f.value) if op == "contains": where_parts.append(f"{f.column} ILIKE '%' || {val} || '%'") elif op == "!contains": where_parts.append(f"{f.column} NOT ILIKE '%' || {val} || '%'") elif op == "empty": where_parts.append(f"{f.column} = {val}") elif op == "!empty": where_parts.append(f"{f.column} != {val}") else: where_parts.append(f"{f.column} {op} {val}") if where_parts: query += " WHERE " + " AND ".join(where_parts) if group_cols: query += " GROUP BY " + ", ".join(group_cols) if params.order_by: query += f" ORDER BY {params.order_by} {params.order_dir}" elif params.graph_type == "timeseries": query += " ORDER BY bucket" if params.limit is not None: query += f" LIMIT {params.limit}" return query def create_app(db_file: str | Path | None = None) -> Flask: app = Flask(__name__, static_folder="static") db_path = Path(db_file or Path(__file__).with_name("sample.csv")).resolve() con = _load_database(db_path) column_types: Dict[str, str] = { r[1]: r[2] for r in con.execute("PRAGMA table_info(events)").fetchall() } sample_cache: Dict[Tuple[str, str], Tuple[List[str], float]] = {} CACHE_TTL = 60.0 CACHE_LIMIT = 200 @app.route("/") def index() -> Any: # pyright: ignore[reportUnusedFunction] assert app.static_folder is not None return send_from_directory(app.static_folder, "index.html") @app.route("/js/<path:filename>") def js(filename: str) -> Any: # pyright: ignore[reportUnusedFunction] assert app.static_folder is not None folder = Path(app.static_folder) / "js" return send_from_directory(folder, filename) @app.route("/api/columns") def columns() -> Any: # pyright: ignore[reportUnusedFunction] rows = con.execute("PRAGMA table_info(events)").fetchall() return jsonify([{"name": r[1], "type": r[2]} for r in rows]) def _cache_get(key: Tuple[str, str]) -> List[str] | None: item = sample_cache.get(key) if item is None: return None vals, ts = item if time.time() - ts > CACHE_TTL: del sample_cache[key] return None sample_cache[key] = (vals, time.time()) return vals def _cache_set(key: Tuple[str, str], vals: List[str]) -> None: sample_cache[key] = (vals, time.time()) if len(sample_cache) > CACHE_LIMIT: oldest = min(sample_cache.items(), key=lambda kv: kv[1][1])[0] del sample_cache[oldest] @app.route("/api/samples") def sample_values() -> Any: # pyright: ignore[reportUnusedFunction] column = request.args.get("column") substr = request.args.get("q", "") if not column or column not in column_types: return jsonify([]) ctype = column_types[column].upper() if "CHAR" not in ctype and "STRING" not in ctype and "VARCHAR" not in ct ype: return jsonify([]) key = (column, substr) cached = _cache_get(key) if cached is not None: return jsonify(cached) rows = con.execute( f"SELECT DISTINCT {column} FROM events WHERE CAST({column} AS VARCHA R) ILIKE '%' || ? || '%' LIMIT 20", [substr], ).fetchall() values = [r[0] for r in rows] _cache_set(key, values) return jsonify(values) @app.route("/api/query", methods=["POST"]) def query() -> Any: # pyright: ignore[reportUnusedFunction] payload = request.get_json(force=True) try: start = parse_time(payload.get("start")) end = parse_time(payload.get("end")) except Exception as exc: return jsonify({"error": str(exc)}), 400 params = QueryParams( start=start, end=end, order_by=payload.get("order_by"), order_dir=payload.get("order_dir", "ASC"), limit=payload.get("limit"), columns=payload.get("columns", []), derived_columns=payload.get("derived_columns", {}), graph_type=payload.get("graph_type", "samples"), group_by=payload.get("group_by", []), aggregate=payload.get("aggregate"), show_hits=payload.get("show_hits", False), x_axis=payload.get("x_axis"), granularity=payload.get("granularity", "Auto"), fill=payload.get("fill", "0"), ) for f in payload.get("filters", []): params.filters.append(Filter(f["column"], f["op"], f.get("value"))) if params.graph_type not in {"table", "timeseries"} and ( params.group_by or params.aggregate or params.show_hits ): return ( jsonify( { "error": "group_by, aggregate and show_hits are only val id for table or timeseries view" } ), 400, ) valid_cols = set(column_types.keys()) valid_cols.update(params.derived_columns.keys()) if params.graph_type == "timeseries": if params.x_axis is None: for cand in ["time", "timestamp"]: if cand in valid_cols: params.x_axis = cand break if params.x_axis is None or params.x_axis not in valid_cols: return jsonify({"error": "Invalid x_axis"}), 400 ctype = column_types.get(params.x_axis, "").upper() if not any(t in ctype for t in ["TIMESTAMP", "DATE", "TIME"]): return jsonify({"error": "x_axis must be a time column"}), 400 for col in params.columns: if col not in valid_cols: return jsonify({"error": f"Unknown column: {col}"}), 400 for col in params.group_by: if col not in valid_cols: return jsonify({"error": f"Unknown column: {col}"}), 400 if params.order_by and params.order_by not in valid_cols: return jsonify({"error": f"Unknown column: {params.order_by}"}), 400 if params.group_by or params.graph_type == "timeseries": agg = (params.aggregate or "avg").lower() if agg.startswith("p") or agg == "sum": need_numeric = True allow_time = False elif agg == "avg" or agg in {"min", "max"}: need_numeric = False allow_time = True else: need_numeric = False allow_time = False if need_numeric or allow_time: for c in params.columns: if c in params.group_by or c == params.x_axis: continue if c not in column_types: continue ctype = column_types.get(c, "").upper() is_numeric = any( t in ctype for t in [ "INT", "DECIMAL", "REAL", "DOUBLE", "FLOAT", "NUMERIC", "HUGEINT", ] ) is_time = "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype if need_numeric and not is_numeric: return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) if allow_time and not (is_numeric or is_time): return ( jsonify( {
root@75b162e381df:/workspace/scubaduck# sed -n '400,800p' scubaduck/server.py { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) sql = build_query(params, column_types) try: rows = con.execute(sql).fetchall() except Exception as exc: tb = traceback.format_exc() print(f"Query failed:\n{sql}\n{tb}") return ( jsonify({"sql": sql, "error": str(exc), "traceback": tb}), 400, ) return jsonify({"sql": sql, "rows": rows}) return app app = create_app() if __name__ == "__main__": app.run(debug=True)

I'm looking at the timeseries and group_by parts. The design around aliasing is complex, especially for derived columns.

I need to modify how derived columns refer to aggregated aliases using unique names to prevent conflicts.

To prevent conflicts, I'll alias aggregated columns uniquely, then rename them in the outer query.

I'll separate the query into two layers, with derived columns computed in the outer query.

I'll keep aliases consistent and build queries with an inner and outer structure for derived columns.

shell
root@75b162e381df:/workspace/scubaduck# cat scubaduck/sample.csv | head timestamp,event,value,user 2024-01-01 00:00:00,login,10,alice 2024-01-01 01:00:00,logout,20,bob 2024-01-02 00:00:00,login,30,alice 2024-01-02 03:00:00,login,40,charlie

I want to be sure about the test setup, especially the run_query in test_web.

shell
def select_value(page: Any, selector: str, value: str) -> None: page.evaluate( "arg => setSelectValue(arg.sel, arg.val)", {"sel": selector, "val": value}, ) def run_query( page: Any, url: str, *, start: str | None = None, end: str | None = None, order_by: str | None = None, order_dir: str | None = "ASC", limit: int | None = None, group_by: list[str] | None = None, aggregate: str | None = None, ) -> dict[str, Any]: page.goto(url) page.wait_for_selector("#order_by option", state="attached") page.wait_for_selector("#order_dir", state="attached") page.wait_for_function("window.lastResults !== undefined") if start is not None: page.fill("#start", start) if end is not None: page.fill("#end", end) if order_by is not None: select_value(page, "#order_by", order_by) if order_dir is not None and order_dir == "DESC": page.click("#order_dir") if limit is not None: page.fill("#limit", str(limit)) if group_by is not None: select_value(page, "#graph_type", "table")
"g => { groupBy.chips = g; groupBy.renderChips(); }", group_by, ) if aggregate is not None: select_value(page, "#graph_type", "table") select_value(page, "#aggregate", aggregate) page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") return page.evaluate("window.lastResults") def test_range_filters(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-02 00:00:00", end="2024-01-02 04:00:00", order_by="timestamp", limit=100, ) assert len(data["rows"]) == 2 from dateutil import parser timestamps = [parser.parse(row[0]).replace(tzinfo=None) for row in data["row s"]] assert timestamps == [ parser.parse("2024-01-02 00:00:00"), parser.parse("2024-01-02 03:00:00"), ] def test_order_by(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="value", order_dir="DESC", limit=100, ) values = [row[2] for row in data["rows"]] assert values == sorted(values, reverse=True) def test_limit(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="timestamp", limit=2, ) assert len(data["rows"]) == 2 def test_simple_filter(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Add Filter") filter_el = page.query_selector("#filters .filter:last-child") assert filter_el page.evaluate( "arg => setSelectValue(arg.el.querySelector('.f-col'), arg.val)", {"el": filter_el, "val": "user"}, ) val_input = filter_el.query_selector(".f-val") val_input.click() page.keyboard.type("alice") page.keyboard.press("Enter") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") data = page.evaluate("window.lastResults") assert len(data["rows"]) == 2 assert all(row[3] == "alice" for row in data["rows"]) def test_default_filter_and_layout(page: Any, server_url: str) -> None:

I'll check out the server code and search for build_query to fix the bug.

shell
r.py 138:def build_query(params: QueryParams, column_types: Dict[str, str] | None = N one) -> str: 406: sql = build_query(params, column_types)

I'll review the code around 138 and confirm if I can replicate the bug.

shell
root@75b162e381df:/workspace/scubaduck# grep -n "derived" -n tests/test_server.p y 425:def test_derived_column_basic() -> None: 433: "derived_columns": {"val2": "value * 2"},

It looks like the only existing test is test_derived_column_basic. I'll add my test nearby, checking for duplicates around line 420.

shell
data = rv.get_json() assert rv.status_code == 400 assert "Aggregate" in data["error"] def test_derived_column_basic() -> None: app = server.app client = app.test_client() payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "limit": 10, "columns": ["timestamp"], "derived_columns": {"val2": "value * 2"}, "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["rows"][0][1] == 20

I’ll check for any additional tests at the file’s bottom.

shell
root@75b162e381df:/workspace/scubaduck# sed -n '460,520p' tests/test_server.py

I'm adding the new test for derived columns and checking the expected value logic.

I'll assert that derived column equals aggregated value times 2 and verify numeric types.

shell
root@75b162e381df:/workspace/scubaduck# git status --short
(scubaduck) root@75b162e381df:/workspace/scubaduck# python - <<'EOF' > import json > from scubaduck.server import create_app > app = create_app() > client = app.test_client() > > payload = { > "start": "2024-01-01 00:00:00", > "end": "2024-01-03 00:00:00", > "graph_type": "timeseries", > "limit": 7, > "columns": ["value"], > "derived_columns": {"derived_1": "value * 2"}, > "granularity": "1 hour", > "x_axis": "timestamp" > } > rv = client.post('/api/query', data=json.dumps(payload), content_type='applica tion/json') > print(rv.status_code) > print(rv.get_json()) > EOF
Query failed: SELECT TIMESTAMP 'epoch' + INTERVAL '3600 second' * CAST(floor(epoch(timestamp)/ 3600) AS BIGINT) AS bucket, avg(value) AS value, value * 2 AS derived_1 FROM eve nts WHERE timestamp >= '2024-01-01 00:00:00' AND timestamp <= '2024-01-03 00:00: 00' GROUP BY bucket ORDER BY bucket LIMIT 7 Traceback (most recent call last): File "/workspace/scubaduck/scubaduck/server.py", line 408, in query rows = con.execute(sql).fetchall() ^^^^^^^^^^^^^^^^ duckdb.duckdb.BinderException: Binder Error: column "value" must appear in the G ROUP BY clause or must be part of an aggregate function. Either add it to the GROUP BY list, or use "ANY_VALUE(value)" if the exact value of "value" is not important. LINE 1: ...(timestamp)/3600) AS BIGINT) AS bucket, avg(value) AS value, value * 2 AS derived_1 FROM events WHERE timestamp >= '2024... ^ 400 {'error': 'Binder Error: column "value" must appear in the GROUP BY clause or mu st be part of an aggregate function.\nEither add it to the GROUP BY list, or use "ANY_VALUE(value)" if the exact value of "value" is not important.\n\nLINE 1: . ..(timestamp)/3600) AS BIGINT) AS bucket, avg(value) AS value, value * 2 AS deri ved_1 FROM events WHERE timestamp >= \'2024...\n ^', 'sql': "SELECT TIMESTAMP 'epoch' + I NTERVAL '3600 second' * CAST(floor(epoch(timestamp)/3600) AS BIGINT) AS bucket, avg(value) AS value, value * 2 AS derived_1 FROM events WHERE timestamp >= '2024 -01-01 00:00:00' AND timestamp <= '2024-01-03 00:00:00' GROUP BY bucket ORDER BY bucket LIMIT 7", 'traceback': 'Traceback (most recent call last):\n File "/wor kspace/scubaduck/scubaduck/server.py", line 408, in query\n rows = con.execut e(sql).fetchall()\n ^^^^^^^^^^^^^^^^\nduckdb.duckdb.BinderException: B inder Error: column "value" must appear in the GROUP BY clause or must be part o f an aggregate function.\nEither add it to the GROUP BY list, or use "ANY_VALUE( value)" if the exact value of "value" is not important.\n\nLINE 1: ...(timestamp )/3600) AS BIGINT) AS bucket, avg(value) AS value, value * 2 AS derived_1 FROM e vents WHERE timestamp >= \'2024...\n ^\n'} (scubaduck) root@75b162e381df:/workspace/scubaduck#

To address the bug, I'll adjust build_query to properly handle outer and inner queries.

To avoid recursion, I'll manually build the inner query with adjusted parameters.

I'll map columns from params to generate the correct select statement for the query.

I need to ensure proper prefixing for derived columns and avoid ambiguity in the outer query.

shell
(scubaduck) root@75b162e381df:/workspace/scubaduck# head -n 10 scubaduck/server. py from __future__ import annotations from dataclasses import dataclass, field from typing import Any, Dict, List, Tuple import re from datetime import datetime, timedelta, timezone import time from pathlib import Path (scubaduck) root@75b162e381df:/workspace/scubaduck#

I'll add dataclasses.replace to the import statement and review server.py for updates.

shell
(scubaduck) root@75b162e381df:/workspace/scubaduck# grep -n "replace" -n scubadu ck/server.py 80: return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S") 98: return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S") 101: return dt.replace(microsecond=0, tzinfo=None).strftime("%Y-%m-%d %H:%M:% S") (scubaduck) root@75b162e381df:/workspace/scubaduck#

I'll import dataclasses and implement the patch now.

shell
(scubaduck) root@75b162e381df:/workspace/scubaduck# apply_patch<<'PATCH' > *** Begin Patch > *** Update File: scubaduck/server.py > @@ > -from dataclasses import dataclass, field > +from dataclasses import dataclass, field, replace > *** End Patch > PATCH Success. Updated the following files: M scubaduck/server.py (scubaduck) root@75b162e381df:/workspace/scubaduck#

I'll start by making the necessary modifications in build_query and opening the patch.

shell
(scubaduck) root@75b162e381df:/workspace/scubaduck# sed -n '140,230p' scubaduck/ server.py group_cols = params.group_by[:] if params.graph_type == "timeseries": sec = _granularity_seconds(params.granularity, params.start, params.end) x_axis = params.x_axis or "timestamp" bucket_expr = ( f"TIMESTAMP 'epoch' + INTERVAL '{sec} second' * " f"CAST(floor(epoch({x_axis})/{sec}) AS BIGINT)" ) select_parts.append(f"{bucket_expr} AS bucket") group_cols = ["bucket"] + group_cols has_agg = bool(group_cols) or params.aggregate is not None if has_agg: select_cols = ( group_cols[1:] if params.graph_type == "timeseries" else group_cols ) select_parts.extend(select_cols) agg = (params.aggregate or "avg").lower() def agg_expr(col: str) -> str: if agg.startswith("p"): quant = float(agg[1:]) / 100 return f"quantile({col}, {quant})" if agg == "count distinct": return f"count(DISTINCT {col})" if agg == "avg" and column_types is not None: ctype = column_types.get(col, "").upper() if "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype: return ( "TIMESTAMP 'epoch' + INTERVAL '1 second' * " f"CAST(avg(epoch({col})) AS BIGINT)" ) return f"{agg}({col})" for col in params.columns: if col in group_cols: continue select_parts.append(f"{agg_expr(col)} AS {col}") if params.show_hits: select_parts.insert(len(group_cols), "count(*) AS Hits") else: select_parts.extend(params.columns) for name, expr in params.derived_columns.items(): select_parts.append(f"{expr} AS {name}") select_clause = ", ".join(select_parts) if select_parts else "*" query = f"SELECT {select_clause} FROM events" where_parts: list[str] = [] if params.start: where_parts.append(f"timestamp >= '{params.start}'") if params.end: where_parts.append(f"timestamp <= '{params.end}'") for f in params.filters: op = f.op if op in {"empty", "!empty"}: val = "''" else: if f.value is None: continue if isinstance(f.value, list): if not f.value: continue if op == "=": vals = " OR ".join(f"{f.column} = '{v}'" for v in f.value) where_parts.append(f"({vals})") continue val = f"'{f.value}'" if isinstance(f.value, str) else str(f.value) if op == "contains": where_parts.append(f"{f.column} ILIKE '%' || {val} || '%'") elif op == "!contains": where_parts.append(f"{f.column} NOT ILIKE '%' || {val} || '%'") elif op == "empty": where_parts.append(f"{f.column} = {val}") elif op == "!empty": where_parts.append(f"{f.column} != {val}") else: where_parts.append(f"{f.column} {op} {val}") if where_parts: query += " WHERE " + " AND ".join(where_parts) if group_cols: query += " GROUP BY " + ", ".join(group_cols) if params.order_by: query += f" ORDER BY {params.order_by} {params.order_dir}" elif params.graph_type == "timeseries": query += " ORDER BY bucket" if params.limit is not None: query += f" LIMIT {params.limit}" return query def create_app(db_file: str | Path | None = None) -> Flask: app = Flask(__name__, static_folder="static") (scubaduck) root@75b162e381df:/workspace/scubaduck#

I'll adjust logic to handle derived_columns with has_agg. I'll modify the query building process.

I’ll avoid code duplication by calling build_query recursively for the inner query construction.

I need to ensure that inner_sql includes bucket alias, then apply the patch.

shell
> *** Begin Patch > *** Update File: scubaduck/server.py > @@ > has_agg = bool(group_cols) or params.aggregate is not None > if has_agg: > @@ > - if params.show_hits: > - select_parts.insert(len(group_cols), "count(*) AS Hits") > - else: > - select_parts.extend(params.columns) > - for name, expr in params.derived_columns.items(): > - select_parts.append(f"{expr} AS {name}") > - select_clause = ", ".join(select_parts) if select_parts else "*" > - query = f"SELECT {select_clause} FROM events" > + if params.show_hits: > + select_parts.insert(len(group_cols), "count(*) AS Hits") > + else: > + select_parts.extend(params.columns) > + > + if has_agg and params.derived_columns: > + inner_params = replace( > + params, > + derived_columns={}, > + order_by=None, > + limit=None, > + ) > + inner_sql = build_query(inner_params, column_types) > + outer_select = ["t.*"] + [f"{expr} AS {name}" for name, expr in param s.derived_columns.items()] > + query = f"SELECT {', '.join(outer_select)} FROM ({inner_sql}) t" > + if params.order_by: > + query += f" ORDER BY {params.order_by} {params.order_dir}" > + elif params.graph_type == "timeseries": > + query += " ORDER BY bucket" > + if params.limit is not None: > + query += f" LIMIT {params.limit}" > + return query > + > + for name, expr in params.derived_columns.items(): > + select_parts.append(f"{expr} AS {name}") > + select_clause = ", ".join(select_parts) if select_parts else "*" > + query = f"SELECT {select_clause} FROM events" > *** End Patch > PATCH Success. Updated the following files: M scubaduck/server.py (scubaduck) root@75b162e381df:/workspace/scubaduck#

Looks like the function might be missing a proper return or closing—I'll open the file.

shell
server.py def build_query(params: QueryParams, column_types: Dict[str, str] | None = None) -> str: select_parts: list[str] = [] group_cols = params.group_by[:] if params.graph_type == "timeseries": sec = _granularity_seconds(params.granularity, params.start, params.end) x_axis = params.x_axis or "timestamp" bucket_expr = ( f"TIMESTAMP 'epoch' + INTERVAL '{sec} second' * " f"CAST(floor(epoch({x_axis})/{sec}) AS BIGINT)" ) select_parts.append(f"{bucket_expr} AS bucket") group_cols = ["bucket"] + group_cols has_agg = bool(group_cols) or params.aggregate is not None if has_agg: select_cols = ( group_cols[1:] if params.graph_type == "timeseries" else group_cols ) select_parts.extend(select_cols) agg = (params.aggregate or "avg").lower() def agg_expr(col: str) -> str: if agg.startswith("p"): quant = float(agg[1:]) / 100 return f"quantile({col}, {quant})" if agg == "count distinct": return f"count(DISTINCT {col})" if agg == "avg" and column_types is not None: ctype = column_types.get(col, "").upper() if "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype: return ( "TIMESTAMP 'epoch' + INTERVAL '1 second' * " f"CAST(avg(epoch({col})) AS BIGINT)" ) return f"{agg}({col})" for col in params.columns: if col in group_cols: continue select_parts.append(f"{agg_expr(col)} AS {col}") if params.show_hits: select_parts.insert(len(group_cols), "count(*) AS Hits") else: select_parts.extend(params.columns) if has_agg and params.derived_columns: inner_params = replace( params, derived_columns={}, order_by=None, limit=None, ) inner_sql = build_query(inner_params, column_types) outer_select = ["t.*"] + [f"{expr} AS {name}" for name, expr in params.d erived_columns.items()] query = f"SELECT {', '.join(outer_select)} FROM ({inner_sql}) t" if params.order_by: query += f" ORDER BY {params.order_by} {params.order_dir}" elif params.graph_type == "timeseries": query += " ORDER BY bucket" if params.limit is not None: query += f" LIMIT {params.limit}" return query for name, expr in params.derived_columns.items(): select_parts.append(f"{expr} AS {name}") select_clause = ", ".join(select_parts) if select_parts else "*" query = f"SELECT {select_clause} FROM events" where_parts: list[str] = [] if params.start: where_parts.append(f"timestamp >= '{params.start}'") if params.end: where_parts.append(f"timestamp <= '{params.end}'") for f in params.filters: op = f.op if op in {"empty", "!empty"}: val = "''" else: if f.value is None: continue if isinstance(f.value, list): if not f.value: continue if op == "=": vals = " OR ".join(f"{f.column} = '{v}'" for v in f.value) where_parts.append(f"({vals})") continue val = f"'{f.value}'" if isinstance(f.value, str) else str(f.value) if op == "contains": where_parts.append(f"{f.column} ILIKE '%' || {val} || '%'") elif op == "!contains": where_parts.append(f"{f.column} NOT ILIKE '%' || {val} || '%'") elif op == "empty": where_parts.append(f"{f.column} = {val}")
server.py where_parts.append(f"{f.column} = {val}") elif op == "!empty": where_parts.append(f"{f.column} != {val}") else: where_parts.append(f"{f.column} {op} {val}") if where_parts: query += " WHERE " + " AND ".join(where_parts) if group_cols: query += " GROUP BY " + ", ".join(group_cols) if params.order_by: query += f" ORDER BY {params.order_by} {params.order_dir}" elif params.graph_type == "timeseries": query += " ORDER BY bucket" if params.limit is not None: query += f" LIMIT {params.limit}" return query def create_app(db_file: str | Path | None = None) -> Flask: app = Flask(__name__, static_folder="static") db_path = Path(db_file or Path(__file__).with_name("sample.csv")).resolve() con = _load_database(db_path) column_types: Dict[str, str] = { r[1]: r[2] for r in con.execute("PRAGMA table_info(events)").fetchall() } sample_cache: Dict[Tuple[str, str], Tuple[List[str], float]] = {} CACHE_TTL = 60.0 CACHE_LIMIT = 200 @app.route("/") def index() -> Any: # pyright: ignore[reportUnusedFunction] assert app.static_folder is not None return send_from_directory(app.static_folder, "index.html") @app.route("/js/<path:filename>") def js(filename: str) -> Any: # pyright: ignore[reportUnusedFunction] assert app.static_folder is not None folder = Path(app.static_folder) / "js" return send_from_directory(folder, filename) @app.route("/api/columns") def columns() -> Any: # pyright: ignore[reportUnusedFunction] rows = con.execute("PRAGMA table_info(events)").fetchall() return jsonify([{"name": r[1], "type": r[2]} for r in rows]) def _cache_get(key: Tuple[str, str]) -> List[str] | None: item = sample_cache.get(key) if item is None: return None vals, ts = item if time.time() - ts > CACHE_TTL: del sample_cache[key] return None sample_cache[key] = (vals, time.time()) return vals def _cache_set(key: Tuple[str, str], vals: List[str]) -> None: sample_cache[key] = (vals, time.time()) if len(sample_cache) > CACHE_LIMIT: oldest = min(sample_cache.items(), key=lambda kv: kv[1][1])[0] del sample_cache[oldest] @app.route("/api/samples") def sample_values() -> Any: # pyright: ignore[reportUnusedFunction] column = request.args.get("column") substr = request.args.get("q", "") if not column or column not in column_types: return jsonify([]) ctype = column_types[column].upper() if "CHAR" not in ctype and "STRING" not in ctype and "VARCHAR" not in ct ype: return jsonify([]) key = (column, substr) cached = _cache_get(key) if cached is not None: return jsonify(cached) rows = con.execute( f"SELECT DISTINCT {column} FROM events WHERE CAST({column} AS VARCHA R) ILIKE '%' || ? || '%' LIMIT 20", [substr], ).fetchall() values = [r[0] for r in rows] _cache_set(key, values) return jsonify(values) @app.route("/api/query", methods=["POST"]) def query() -> Any: # pyright: ignore[reportUnusedFunction] payload = request.get_json(force=True) try: start = parse_time(payload.get("start")) end = parse_time(payload.get("end")) except Exception as exc: return jsonify({"error": str(exc)}), 400 params = QueryParams( start=start, end=end, order_by=payload.get("order_by"), order_dir=payload.get("order_dir", "ASC"), limit=payload.get("limit"), columns=payload.get("columns", []), derived_columns=payload.get("derived_columns", {}), graph_type=payload.get("graph_type", "samples"), group_by=payload.get("group_by", []), aggregate=payload.get("aggregate"), show_hits=payload.get("show_hits", False), x_axis=payload.get("x_axis"), granularity=payload.get("granularity", "Auto"), fill=payload.get("fill", "0"), ) for f in payload.get("filters", []): params.filters.append(Filter(f["column"], f["op"], f.get("value"))) (scubaduck) root@75b162e381df:/workspace/scubaduck#

I'll check for duplicates in variables or loops, and run ruff format to clean up.

shell
(scubaduck) root@75b162e381df:/workspace/scubaduck# ruff format scubaduck/server .py > /tmp/format.log && tail -n 20 /tmp/format.log 1 file reformatted (scubaduck) root@75b162e381df:/workspace/scubaduck#

I'll try running ruff and pyright to verify everything.

shell
(scubaduck) root@75b162e381df:/workspace/scubaduck# ruff check scubaduck > /tmp/ ruff.log && tail -n 20 /tmp/ruff.log All checks passed!
(scubaduck) root@75b162e381df:/workspace/scubaduck# pyright scubaduck > /tmp/pyr ight.log && tail -n 20 /tmp/pyright.log 0 errors, 0 warnings, 0 informations (scubaduck) root@75b162e381df:/workspace/scubaduck#

Time to add a test for the derived column timeseries in test_server.py.

shell
(scubaduck) root@75b162e381df:/workspace/scubaduck# sed -n '440,460p' tests/test _server.py assert rv.status_code == 200 assert data["rows"][0][1] == 20 (scubaduck) root@75b162e381df:/workspace/scubaduck#

I'll inspect lines 430-460 to wrap this up.

shell
(scubaduck) root@75b162e381df:/workspace/scubaduck# sed -n '430,452p' tests/test _server.py "end": "2024-01-03 00:00:00", "limit": 10, "columns": ["timestamp"], "derived_columns": {"val2": "value * 2"}, "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["rows"][0][1] == 20 (scubaduck) root@75b162e381df:/workspace/scubaduck#

I’m thinking of adding a new test after this step.

shell
> *** Begin Patch > *** Update File: tests/test_server.py > @@ > def test_derived_column_basic() -> None: > @@ > assert rv.status_code == 200 > assert data["rows"][0][1] == 20 > + > + > +def test_timeseries_derived_column() -> None: > + app = server.app > + client = app.test_client() > + payload = { > + "start": "2024-01-01 00:00:00", > + "end": "2024-01-03 00:00:00", > + "graph_type": "timeseries", > + "granularity": "1 hour", > + "limit": 7, > + "columns": ["value"], > + "derived_columns": {"derived_1": "value * 2"}, > + } > + rv = client.post( > + "/api/query", data=json.dumps(payload), content_type="application/jso n" > + ) > + data = rv.get_json() > + assert rv.status_code == 200 > + rows = data["rows"] > + assert all(r[2] == r[1] * 2 for r in rows) > *** End Patch > PATCH Success. Updated the following files: M tests/test_server.py
(scubaduck) root@75b162e381df:/workspace/scubaduck# ruff format tests/test_serve r.py > /tmp/format.log && tail -n 20 /tmp/format.log 1 file left unchanged
(scubaduck) root@75b162e381df:/workspace/scubaduck# ruff check tests/test_server .py > /tmp/ruff.log && tail -n 20 /tmp/ruff.log All checks passed! (scubaduck) root@75b162e381df:/workspace/scubaduck#

I’ll run pyright now to check for any typing issues in the code.

shell
(scubaduck) root@75b162e381df:/workspace/scubaduck# pyright tests/test_server.py > /tmp/pyright.log && tail -n 20 /tmp/pyright.log 0 errors, 0 warnings, 0 informations (scubaduck) root@75b162e381df:/workspace/scubaduck#

I'll run ruff check, format, and pyright to make sure there are no new issues.

shell
(scubaduck) root@75b162e381df:/workspace/scubaduck# ruff format > /tmp/format.lo g && tail -n 20 /tmp/format.log 6 files left unchanged
(scubaduck) root@75b162e381df:/workspace/scubaduck# ruff check > /tmp/ruff.log & & tail -n 20 /tmp/ruff.log All checks passed!
(scubaduck) root@75b162e381df:/workspace/scubaduck# pyright > /tmp/pyright.log & & tail -n 20 /tmp/pyright.log
0 errors, 0 warnings, 0 informations (scubaduck) root@75b162e381df:/workspace/scubaduck#

Now, it's time to run the tests and check everything works correctly!

shell
(scubaduck) root@75b162e381df:/workspace/scubaduck# pytest -q > /tmp/pytest.log && tail -n 20 /tmp/pytest.log




bringing up nodes... bringing up nodes... ................................................................ [100%] 64 passed in 9.01s (scubaduck) root@75b162e381df:/workspace/scubaduck#

All tests passed, now checking the git status.

shell
(scubaduck) root@75b162e381df:/workspace/scubaduck# git status --short M scubaduck/server.py M tests/test_server.py (scubaduck) root@75b162e381df:/workspace/scubaduck#

I’m ready to commit the changes now.

shell
(scubaduck) root@75b162e381df:/workspace/scubaduck# git add scubaduck/server.py tests/test_server.py
(scubaduck) root@75b162e381df:/workspace/scubaduck# git commit -m "fix(server): support derived columns with aggregation" && git status --short [work 84b031b] fix(server): support derived columns with aggregation 2 files changed, 43 insertions(+), 1 deletion(-) (scubaduck) root@75b162e381df:/workspace/scubaduck#

I’m reviewing the commit status now.

shell
(scubaduck) root@75b162e381df:/workspace/scubaduck# git status --short (scubaduck) root@75b162e381df:/workspace/scubaduck#

I'll gather line references from server and test changes for the PR.

shell
sed -n '150,215p' 150 has_agg = bool(group_cols) or params.aggregate is not None 151 if has_agg: 152 select_cols = ( 153 group_cols[1:] if params.graph_type == "timeseries" else gro up_cols 154 ) 155 select_parts.extend(select_cols) 156 agg = (params.aggregate or "avg").lower() 157 158 def agg_expr(col: str) -> str: 159 if agg.startswith("p"): 160 quant = float(agg[1:]) / 100 161 return f"quantile({col}, {quant})" 162 if agg == "count distinct": 163 return f"count(DISTINCT {col})" 164 if agg == "avg" and column_types is not None: 165 ctype = column_types.get(col, "").upper() 166 if "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype: 167 return ( 168 "TIMESTAMP 'epoch' + INTERVAL '1 second' * " 169 f"CAST(avg(epoch({col})) AS BIGINT)" 170 ) 171 return f"{agg}({col})" 172 173 for col in params.columns: 174 if col in group_cols: 175 continue 176 select_parts.append(f"{agg_expr(col)} AS {col}") 177 if params.show_hits: 178 select_parts.insert(len(group_cols), "count(*) AS Hits") 179 else: 180 select_parts.extend(params.columns) 181 182 if has_agg and params.derived_columns: 183 inner_params = replace( 184 params, 185 derived_columns={}, 186 order_by=None, 187 limit=None, 188 ) 189 inner_sql = build_query(inner_params, column_types) 190 outer_select = ["t.*"] + [ 191 f"{expr} AS {name}" for name, expr in params.derived_columns .items() 192 ] 193 query = f"SELECT {', '.join(outer_select)} FROM ({inner_sql}) t" 194 if params.order_by: 195 query += f" ORDER BY {params.order_by} {params.order_dir}" 196 elif params.graph_type == "timeseries": 197 query += " ORDER BY bucket" 198 if params.limit is not None: 199 query += f" LIMIT {params.limit}" 200 return query 201 202 for name, expr in params.derived_columns.items(): 203 select_parts.append(f"{expr} AS {name}") 204 select_clause = ", ".join(select_parts) if select_parts else "*" 205 query = f"SELECT {select_clause} FROM events" 206 where_parts: list[str] = [] 207 if params.start: 208 where_parts.append(f"timestamp >= '{params.start}'") 209 if params.end: 210 where_parts.append(f"timestamp <= '{params.end}'") 211 for f in params.filters: 212 op = f.op 213 if op in {"empty", "!empty"}: 214 val = "''" 215 else: (scubaduck) root@75b162e381df:/workspace/scubaduck#

I’ll focus on lines 150-205 and capture the test lines.

shell
(scubaduck) root@75b162e381df:/workspace/scubaduck# nl -ba tests/test_server.py | sed -n '435,472p' 435 } 436 rv = client.post( 437 "/api/query", data=json.dumps(payload), content_type="applicatio n/json" 438 ) 439 data = rv.get_json() 440 assert rv.status_code == 200 441 assert data["rows"][0][1] == 20 442 443 444 def test_timeseries_derived_column() -> None: 445 app = server.app 446 client = app.test_client() 447 payload = { 448 "start": "2024-01-01 00:00:00", 449 "end": "2024-01-03 00:00:00", 450 "graph_type": "timeseries", 451 "granularity": "1 hour", 452 "limit": 7, 453 "columns": ["value"], 454 "derived_columns": {"derived_1": "value * 2"}, 455 } 456 rv = client.post( 457 "/api/query", data=json.dumps(payload), content_type="applicatio n/json" 458 ) 459 data = rv.get_json() 460 assert rv.status_code == 200 461 rows = data["rows"] 462 assert all(r[2] == r[1] * 2 for r in rows) (scubaduck) root@75b162e381df:/workspace/scubaduck#

I'll summarize the changes and add the relevant user prompt to the PR message.