Task ID: task_e_682e6d298d308323b9f63ce6e47754de
certifi ------------------------------ 16.00 KiB/155.88 KiB
werkzeug ------------------------------ 75.17 KiB/219.24 KiB
python-dateutil ------------------------------ 14.86 KiB/224.50 KiB
pytest ------------------------------ 77.14 KiB/335.58 KiB
greenlet ------------------------------ 16.00 KiB/589.71 KiB
pyright ------------------------------ 0 B/5.31 MiB
ruff ------------------------------ 32.00 KiB/11.02 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
iniconfig ------------------------------ 5.91 KiB/5.91 KiB
python-slugify ------------------------------ 8.00 KiB/9.82 KiB
pyee ------------------------------ 15.36 KiB/15.36 KiB
itsdangerous ------------------------------ 14.88 KiB/15.85 KiB
pytest-playwright ------------------------------ 16.23 KiB/16.23 KiB
execnet ------------------------------ 14.88 KiB/39.66 KiB
typing-extensions ------------------------------ 32.00 KiB/44.73 KiB
pytest-xdist ------------------------------ 45.03 KiB/45.03 KiB
requests ------------------------------ 14.88 KiB/63.41 KiB
packaging ------------------------------ 16.00 KiB/64.91 KiB
idna ------------------------------ 16.00 KiB/68.79 KiB
urllib3 ------------------------------ 32.00 KiB/125.66 KiB
jinja2 ------------------------------ 14.88 KiB/131.74 KiB
charset-normalizer ------------------------------ 142.50 KiB/145.08 KiB
certifi ------------------------------ 16.00 KiB/155.88 KiB
werkzeug ------------------------------ 75.17 KiB/219.24 KiB
python-dateutil ------------------------------ 14.86 KiB/224.50 KiB
pytest ------------------------------ 77.14 KiB/335.58 KiB
greenlet ------------------------------ 16.00 KiB/589.71 KiB
pyright ------------------------------ 0 B/5.31 MiB
ruff ------------------------------ 32.00 KiB/11.02 MiB
duckdb ------------------------------ 717.61 KiB/19.27 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
python-slugify ------------------------------ 9.82 KiB/9.82 KiB
pyee ------------------------------ 15.36 KiB/15.36 KiB
itsdangerous ------------------------------ 14.88 KiB/15.85 KiB
pytest-playwright ------------------------------ 16.23 KiB/16.23 KiB
execnet ------------------------------ 30.88 KiB/39.66 KiB
typing-extensions ------------------------------ 44.73 KiB/44.73 KiB
pytest-xdist ------------------------------ 45.03 KiB/45.03 KiB
requests ------------------------------ 30.88 KiB/63.41 KiB
packaging ------------------------------ 16.00 KiB/64.91 KiB
idna ------------------------------ 32.00 KiB/68.79 KiB
urllib3 ------------------------------ 48.00 KiB/125.66 KiB
jinja2 ------------------------------ 30.88 KiB/131.74 KiB
charset-normalizer ------------------------------ 142.50 KiB/145.08 KiB
certifi ------------------------------ 80.00 KiB/155.88 KiB
werkzeug ------------------------------ 75.17 KiB/219.24 KiB
python-dateutil ------------------------------ 30.86 KiB/224.50 KiB
pytest ------------------------------ 93.14 KiB/335.58 KiB
greenlet ------------------------------ 32.00 KiB/589.71 KiB
pyright ------------------------------ 8.00 KiB/5.31 MiB
ruff ------------------------------ 64.00 KiB/11.02 MiB
duckdb ------------------------------ 781.61 KiB/19.27 MiB
playwright ------------------------------ 30.91 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
python-slugify ------------------------------ 9.82 KiB/9.82 KiB
pyee ------------------------------ 15.36 KiB/15.36 KiB
itsdangerous ------------------------------ 14.88 KiB/15.85 KiB
execnet ------------------------------ 30.88 KiB/39.66 KiB
typing-extensions ------------------------------ 44.73 KiB/44.73 KiB
pytest-xdist ------------------------------ 45.03 KiB/45.03 KiB
requests ------------------------------ 30.88 KiB/63.41 KiB
packaging ------------------------------ 16.00 KiB/64.91 KiB
idna ------------------------------ 32.00 KiB/68.79 KiB
urllib3 ------------------------------ 48.00 KiB/125.66 KiB
jinja2 ------------------------------ 30.88 KiB/131.74 KiB
charset-normalizer ------------------------------ 142.50 KiB/145.08 KiB
certifi ------------------------------ 80.00 KiB/155.88 KiB
werkzeug ------------------------------ 75.17 KiB/219.24 KiB
python-dateutil ------------------------------ 30.86 KiB/224.50 KiB
pytest ------------------------------ 109.14 KiB/335.58 KiB
greenlet ------------------------------ 32.00 KiB/589.71 KiB
pyright ------------------------------ 8.00 KiB/5.31 MiB
ruff ------------------------------ 80.00 KiB/11.02 MiB
duckdb ------------------------------ 781.61 KiB/19.27 MiB
playwright ------------------------------ 30.91 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
pyee ------------------------------ 15.36 KiB/15.36 KiB
itsdangerous ------------------------------ 14.88 KiB/15.85 KiB
execnet ------------------------------ 30.88 KiB/39.66 KiB
typing-extensions ------------------------------ 44.73 KiB/44.73 KiB
pytest-xdist ------------------------------ 45.03 KiB/45.03 KiB
requests ------------------------------ 30.88 KiB/63.41 KiB
packaging ------------------------------ 32.00 KiB/64.91 KiB
idna ------------------------------ 64.00 KiB/68.79 KiB
urllib3 ------------------------------ 48.00 KiB/125.66 KiB
jinja2 ------------------------------ 46.88 KiB/131.74 KiB
charset-normalizer ------------------------------ 142.50 KiB/145.08 KiB
certifi ------------------------------ 128.00 KiB/155.88 KiB
werkzeug ------------------------------ 91.17 KiB/219.24 KiB
python-dateutil ------------------------------ 46.86 KiB/224.50 KiB
pytest ------------------------------ 109.14 KiB/335.58 KiB
greenlet ------------------------------ 48.00 KiB/589.71 KiB
pyright ------------------------------ 8.00 KiB/5.31 MiB
ruff ------------------------------ 128.00 KiB/11.02 MiB
duckdb ------------------------------ 829.61 KiB/19.27 MiB
playwright ------------------------------ 30.91 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
pyee ------------------------------ 15.36 KiB/15.36 KiB
execnet ------------------------------ 30.88 KiB/39.66 KiB
typing-extensions ------------------------------ 44.73 KiB/44.73 KiB
pytest-xdist ------------------------------ 45.03 KiB/45.03 KiB
requests ------------------------------ 30.88 KiB/63.41 KiB
packaging ------------------------------ 48.00 KiB/64.91 KiB
idna ------------------------------ 64.00 KiB/68.79 KiB
urllib3 ------------------------------ 48.00 KiB/125.66 KiB
jinja2 ------------------------------ 46.88 KiB/131.74 KiB
charset-normalizer ------------------------------ 142.50 KiB/145.08 KiB
certifi ------------------------------ 155.88 KiB/155.88 KiB
werkzeug ------------------------------ 91.17 KiB/219.24 KiB
python-dateutil ------------------------------ 46.86 KiB/224.50 KiB
pytest ------------------------------ 125.14 KiB/335.58 KiB
greenlet ------------------------------ 48.00 KiB/589.71 KiB
pyright ------------------------------ 8.00 KiB/5.31 MiB
ruff ------------------------------ 176.00 KiB/11.02 MiB
duckdb ------------------------------ 877.61 KiB/19.27 MiB
playwright ------------------------------ 30.91 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
pyee ------------------------------ 15.36 KiB/15.36 KiB
execnet ------------------------------ 30.88 KiB/39.66 KiB
pytest-xdist ------------------------------ 45.03 KiB/45.03 KiB
requests ------------------------------ 46.88 KiB/63.41 KiB
packaging ------------------------------ 48.00 KiB/64.91 KiB
idna ------------------------------ 64.00 KiB/68.79 KiB
urllib3 ------------------------------ 64.00 KiB/125.66 KiB
jinja2 ------------------------------ 62.88 KiB/131.74 KiB
charset-normalizer ------------------------------ 142.50 KiB/145.08 KiB
certifi ------------------------------ 155.88 KiB/155.88 KiB
werkzeug ------------------------------ 91.17 KiB/219.24 KiB
python-dateutil ------------------------------ 46.86 KiB/224.50 KiB
pytest ------------------------------ 125.14 KiB/335.58 KiB
greenlet ------------------------------ 48.00 KiB/589.71 KiB
pyright ------------------------------ 8.00 KiB/5.31 MiB
ruff ------------------------------ 192.00 KiB/11.02 MiB
duckdb ------------------------------ 893.61 KiB/19.27 MiB
playwright ------------------------------ 46.91 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
execnet ------------------------------ 30.88 KiB/39.66 KiB
pytest-xdist ------------------------------ 45.03 KiB/45.03 KiB
requests ------------------------------ 46.88 KiB/63.41 KiB
packaging ------------------------------ 48.00 KiB/64.91 KiB
idna ------------------------------ 64.00 KiB/68.79 KiB
urllib3 ------------------------------ 64.00 KiB/125.66 KiB
jinja2 ------------------------------ 62.88 KiB/131.74 KiB
charset-normalizer ------------------------------ 142.50 KiB/145.08 KiB
certifi ------------------------------ 155.88 KiB/155.88 KiB
werkzeug ------------------------------ 91.17 KiB/219.24 KiB
python-dateutil ------------------------------ 46.86 KiB/224.50 KiB
pytest ------------------------------ 125.14 KiB/335.58 KiB
greenlet ------------------------------ 48.00 KiB/589.71 KiB
pyright ------------------------------ 8.00 KiB/5.31 MiB
ruff ------------------------------ 192.00 KiB/11.02 MiB
duckdb ------------------------------ 893.61 KiB/19.27 MiB
playwright ------------------------------ 46.91 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
execnet ------------------------------ 30.88 KiB/39.66 KiB
requests ------------------------------ 46.88 KiB/63.41 KiB
packaging ------------------------------ 48.00 KiB/64.91 KiB
idna ------------------------------ 64.00 KiB/68.79 KiB
urllib3 ------------------------------ 64.00 KiB/125.66 KiB
jinja2 ------------------------------ 78.88 KiB/131.74 KiB
charset-normalizer ------------------------------ 145.08 KiB/145.08 KiB
certifi ------------------------------ 155.88 KiB/155.88 KiB
werkzeug ------------------------------ 91.17 KiB/219.24 KiB
python-dateutil ------------------------------ 46.86 KiB/224.50 KiB
pytest ------------------------------ 125.14 KiB/335.58 KiB
greenlet ------------------------------ 48.00 KiB/589.71 KiB
pyright ------------------------------ 8.00 KiB/5.31 MiB
ruff ------------------------------ 208.00 KiB/11.02 MiB
duckdb ------------------------------ 909.61 KiB/19.27 MiB
playwright ------------------------------ 46.91 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
execnet ------------------------------ 30.88 KiB/39.66 KiB
requests ------------------------------ 46.88 KiB/63.41 KiB
packaging ------------------------------ 64.91 KiB/64.91 KiB
urllib3 ------------------------------ 77.20 KiB/125.66 KiB
jinja2 ------------------------------ 78.88 KiB/131.74 KiB
charset-normalizer ------------------------------ 145.08 KiB/145.08 KiB
certifi ------------------------------ 155.88 KiB/155.88 KiB
werkzeug ------------------------------ 107.17 KiB/219.24 KiB
python-dateutil ------------------------------ 62.86 KiB/224.50 KiB
pytest ------------------------------ 141.14 KiB/335.58 KiB
greenlet ------------------------------ 64.00 KiB/589.71 KiB
pyright ------------------------------ 16.00 KiB/5.31 MiB
ruff ------------------------------ 240.00 KiB/11.02 MiB
duckdb ------------------------------ 957.61 KiB/19.27 MiB
playwright ------------------------------ 46.91 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
execnet ------------------------------ 30.88 KiB/39.66 KiB
requests ------------------------------ 46.88 KiB/63.41 KiB
packaging ------------------------------ 64.91 KiB/64.91 KiB
urllib3 ------------------------------ 77.20 KiB/125.66 KiB
jinja2 ------------------------------ 78.88 KiB/131.74 KiB
certifi ------------------------------ 155.88 KiB/155.88 KiB
werkzeug ------------------------------ 107.17 KiB/219.24 KiB
python-dateutil ------------------------------ 62.86 KiB/224.50 KiB
pytest ------------------------------ 141.14 KiB/335.58 KiB
greenlet ------------------------------ 64.00 KiB/589.71 KiB
pyright ------------------------------ 16.00 KiB/5.31 MiB
ruff ------------------------------ 256.00 KiB/11.02 MiB
duckdb ------------------------------ 957.61 KiB/19.27 MiB
playwright ------------------------------ 46.91 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
execnet ------------------------------ 39.66 KiB/39.66 KiB
requests ------------------------------ 63.41 KiB/63.41 KiB
packaging ------------------------------ 64.91 KiB/64.91 KiB
urllib3 ------------------------------ 77.20 KiB/125.66 KiB
jinja2 ------------------------------ 94.88 KiB/131.74 KiB
werkzeug ------------------------------ 107.17 KiB/219.24 KiB
python-dateutil ------------------------------ 78.86 KiB/224.50 KiB
pytest ------------------------------ 173.14 KiB/335.58 KiB
greenlet ------------------------------ 128.00 KiB/589.71 KiB
pyright ------------------------------ 16.00 KiB/5.31 MiB
ruff ------------------------------ 320.00 KiB/11.02 MiB
duckdb ------------------------------ 1021.61 KiB/19.27 MiB
playwright ------------------------------ 46.91 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
execnet ------------------------------ 39.66 KiB/39.66 KiB
requests ------------------------------ 63.41 KiB/63.41 KiB
packaging ------------------------------ 64.91 KiB/64.91 KiB
urllib3 ------------------------------ 77.20 KiB/125.66 KiB
jinja2 ------------------------------ 94.88 KiB/131.74 KiB
werkzeug ------------------------------ 107.17 KiB/219.24 KiB
python-dateutil ------------------------------ 94.86 KiB/224.50 KiB
pytest ------------------------------ 173.14 KiB/335.58 KiB
greenlet ------------------------------ 144.00 KiB/589.71 KiB
pyright ------------------------------ 16.00 KiB/5.31 MiB
ruff ------------------------------ 320.00 KiB/11.02 MiB
duckdb ------------------------------ 1.01 MiB/19.27 MiB
playwright ------------------------------ 46.91 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
execnet ------------------------------ 39.66 KiB/39.66 KiB
packaging ------------------------------ 64.91 KiB/64.91 KiB
urllib3 ------------------------------ 93.20 KiB/125.66 KiB
jinja2 ------------------------------ 126.88 KiB/131.74 KiB
werkzeug ------------------------------ 123.17 KiB/219.24 KiB
python-dateutil ------------------------------ 190.86 KiB/224.50 KiB
pytest ------------------------------ 189.14 KiB/335.58 KiB
greenlet ------------------------------ 240.00 KiB/589.71 KiB
pyright ------------------------------ 16.00 KiB/5.31 MiB
ruff ------------------------------ 432.00 KiB/11.02 MiB
duckdb ------------------------------ 1.11 MiB/19.27 MiB
playwright ------------------------------ 62.91 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
execnet ------------------------------ 39.66 KiB/39.66 KiB
urllib3 ------------------------------ 93.20 KiB/125.66 KiB
jinja2 ------------------------------ 126.88 KiB/131.74 KiB
werkzeug ------------------------------ 123.17 KiB/219.24 KiB
python-dateutil ------------------------------ 224.50 KiB/224.50 KiB
pytest ------------------------------ 189.14 KiB/335.58 KiB
greenlet ------------------------------ 272.00 KiB/589.71 KiB
pyright ------------------------------ 16.00 KiB/5.31 MiB
ruff ------------------------------ 460.16 KiB/11.02 MiB
duckdb ------------------------------ 1.14 MiB/19.27 MiB
playwright ------------------------------ 62.91 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
urllib3 ------------------------------ 93.20 KiB/125.66 KiB
jinja2 ------------------------------ 126.88 KiB/131.74 KiB
werkzeug ------------------------------ 123.17 KiB/219.24 KiB
python-dateutil ------------------------------ 224.50 KiB/224.50 KiB
pytest ------------------------------ 189.14 KiB/335.58 KiB
greenlet ------------------------------ 304.00 KiB/589.71 KiB
pyright ------------------------------ 32.00 KiB/5.31 MiB
ruff ------------------------------ 492.16 KiB/11.02 MiB
duckdb ------------------------------ 1.17 MiB/19.27 MiB
playwright ------------------------------ 62.91 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
urllib3 ------------------------------ 109.20 KiB/125.66 KiB
jinja2 ------------------------------ 131.74 KiB/131.74 KiB
werkzeug ------------------------------ 139.17 KiB/219.24 KiB
pytest ------------------------------ 221.14 KiB/335.58 KiB
greenlet ------------------------------ 463.49 KiB/589.71 KiB
pyright ------------------------------ 191.70 KiB/5.31 MiB
ruff ------------------------------ 652.16 KiB/11.02 MiB
duckdb ------------------------------ 1.33 MiB/19.27 MiB
playwright ------------------------------ 78.91 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
urllib3 ------------------------------ 109.20 KiB/125.66 KiB
werkzeug ------------------------------ 139.17 KiB/219.24 KiB
pytest ------------------------------ 221.14 KiB/335.58 KiB
greenlet ------------------------------ 463.49 KiB/589.71 KiB
pyright ------------------------------ 239.70 KiB/5.31 MiB
ruff ------------------------------ 700.16 KiB/11.02 MiB
duckdb ------------------------------ 1.36 MiB/19.27 MiB
playwright ------------------------------ 78.91 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
werkzeug ------------------------------ 171.17 KiB/219.24 KiB
pytest ------------------------------ 253.14 KiB/335.58 KiB
greenlet ------------------------------ 479.49 KiB/589.71 KiB
pyright ------------------------------ 527.70 KiB/5.31 MiB
ruff ------------------------------ 988.16 KiB/11.02 MiB
duckdb ------------------------------ 1.65 MiB/19.27 MiB
playwright ------------------------------ 110.91 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
werkzeug ------------------------------ 203.17 KiB/219.24 KiB
pytest ------------------------------ 301.14 KiB/335.58 KiB
greenlet ------------------------------ 479.49 KiB/589.71 KiB
pyright ------------------------------ 735.70 KiB/5.31 MiB
ruff ------------------------------ 1.17 MiB/11.02 MiB
duckdb ------------------------------ 1.86 MiB/19.27 MiB
playwright ------------------------------ 110.91 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
pytest ------------------------------ 333.14 KiB/335.58 KiB
greenlet ------------------------------ 495.49 KiB/589.71 KiB
pyright ------------------------------ 959.70 KiB/5.31 MiB
ruff ------------------------------ 1.38 MiB/11.02 MiB
duckdb ------------------------------ 2.08 MiB/19.27 MiB
playwright ------------------------------ 254.91 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
greenlet ------------------------------ 511.49 KiB/589.71 KiB
pyright ------------------------------ 1.20 MiB/5.31 MiB
ruff ------------------------------ 1.65 MiB/11.02 MiB
duckdb ------------------------------ 2.35 MiB/19.27 MiB
playwright ------------------------------ 536.56 KiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
greenlet ------------------------------ 575.49 KiB/589.71 KiB
pyright ------------------------------ 1.72 MiB/5.31 MiB
ruff ------------------------------ 2.28 MiB/11.02 MiB
duckdb ------------------------------ 2.99 MiB/19.27 MiB
playwright ------------------------------ 1.16 MiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠹ Preparing packages... (5/33)
pyright ------------------------------ 1.79 MiB/5.31 MiB
ruff ------------------------------ 2.62 MiB/11.02 MiB
duckdb ------------------------------ 3.31 MiB/19.27 MiB
playwright ------------------------------ 1.49 MiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠸ Preparing packages... (28/33)
pyright ------------------------------ 1.81 MiB/5.31 MiB
ruff ------------------------------ 3.32 MiB/11.02 MiB
duckdb ------------------------------ 4.02 MiB/19.27 MiB
playwright ------------------------------ 2.17 MiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠸ Preparing packages... (28/33)
pyright ------------------------------ 1.86 MiB/5.31 MiB
ruff ------------------------------ 4.59 MiB/11.02 MiB
duckdb ------------------------------ 5.30 MiB/19.27 MiB
playwright ------------------------------ 3.44 MiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠸ Preparing packages... (28/33)
pyright ------------------------------ 1.93 MiB/5.31 MiB
ruff ------------------------------ 5.98 MiB/11.02 MiB
duckdb ------------------------------ 6.69 MiB/19.27 MiB
playwright ------------------------------ 4.83 MiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠸ Preparing packages... (28/33)
pyright ------------------------------ 2.00 MiB/5.31 MiB
ruff ------------------------------ 7.29 MiB/11.02 MiB
duckdb ------------------------------ 8.05 MiB/19.27 MiB
playwright ------------------------------ 6.14 MiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠸ Preparing packages... (28/33)
pyright ------------------------------ 2.06 MiB/5.31 MiB
ruff ------------------------------ 8.29 MiB/11.02 MiB
duckdb ------------------------------ 9.11 MiB/19.27 MiB
playwright ------------------------------ 7.19 MiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠼ Preparing packages... (28/33)
pyright ------------------------------ 2.11 MiB/5.31 MiB
ruff ------------------------------ 9.61 MiB/11.02 MiB
duckdb ------------------------------ 10.40 MiB/19.27 MiB
playwright ------------------------------ 8.47 MiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠼ Preparing packages... (28/33)
pyright ------------------------------ 2.14 MiB/5.31 MiB
ruff ------------------------------ 11.01 MiB/11.02 MiB
duckdb ------------------------------ 11.87 MiB/19.27 MiB
playwright ------------------------------ 9.92 MiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠼ Preparing packages... (28/33)
pyright ------------------------------ 2.14 MiB/5.31 MiB
duckdb ------------------------------ 11.93 MiB/19.27 MiB
playwright ------------------------------ 10.00 MiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠼ Preparing packages... (28/33)
pyright ------------------------------ 2.17 MiB/5.31 MiB
duckdb ------------------------------ 13.44 MiB/19.27 MiB
playwright ------------------------------ 11.55 MiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠼ Preparing packages... (28/33)
pyright ------------------------------ 2.20 MiB/5.31 MiB
duckdb ------------------------------ 15.31 MiB/19.27 MiB
playwright ------------------------------ 13.39 MiB/43.05 MiB
Building scubaduck @ file:///workspace/scubaduck
⠴ Preparing packages... (29/33)
pyright ------------------------------ 2.25 MiB/5.31 MiB
duckdb ------------------------------ 17.41 MiB/19.27 MiB
playwright ------------------------------ 15.42 MiB/43.05 MiB
Built scubaduck @ file:///workspace/scubaduck
⠴ Preparing packages... (29/33)
pyright ------------------------------ 2.25 MiB/5.31 MiB
duckdb ------------------------------ 17.86 MiB/19.27 MiB
playwright ------------------------------ 15.87 MiB/43.05 MiB
⠴ Preparing packages... (29/33)
pyright ------------------------------ 2.28 MiB/5.31 MiB
duckdb ------------------------------ 19.19 MiB/19.27 MiB
playwright ------------------------------ 17.34 MiB/43.05 MiB
⠴ Preparing packages... (29/33)
pyright ------------------------------ 2.36 MiB/5.31 MiB
playwright ------------------------------ 18.87 MiB/43.05 MiB
⠴ Preparing packages... (29/33)
pyright ------------------------------ 2.39 MiB/5.31 MiB
playwright ------------------------------ 20.81 MiB/43.05 MiB
⠴ Preparing packages... (29/33)
pyright ------------------------------ 2.43 MiB/5.31 MiB
playwright ------------------------------ 25.33 MiB/43.05 MiB
⠦ Preparing packages... (31/33)
pyright ------------------------------ 2.51 MiB/5.31 MiB
playwright ------------------------------ 26.85 MiB/43.05 MiB
⠦ Preparing packages... (31/33)
pyright ------------------------------ 2.66 MiB/5.31 MiB
playwright ------------------------------ 29.28 MiB/43.05 MiB
⠦ Preparing packages... (31/33)
pyright ------------------------------ 2.74 MiB/5.31 MiB
playwright ------------------------------ 31.26 MiB/43.05 MiB
⠦ Preparing packages... (31/33)
pyright ------------------------------ 2.84 MiB/5.31 MiB
playwright ------------------------------ 32.90 MiB/43.05 MiB
⠧ Preparing packages... (31/33)
pyright ------------------------------ 2.95 MiB/5.31 MiB
playwright ------------------------------ 34.90 MiB/43.05 MiB
⠧ Preparing packages... (31/33)
pyright ------------------------------ 3.07 MiB/5.31 MiB
playwright ------------------------------ 36.45 MiB/43.05 MiB
⠧ Preparing packages... (31/33)
pyright ------------------------------ 3.17 MiB/5.31 MiB
playwright ------------------------------ 38.40 MiB/43.05 MiB
⠧ Preparing packages... (31/33)
pyright ------------------------------ 3.25 MiB/5.31 MiB
playwright ------------------------------ 39.94 MiB/43.05 MiB
⠇ Preparing packages... (31/33)
pyright ------------------------------ 3.31 MiB/5.31 MiB
playwright ------------------------------ 41.09 MiB/43.05 MiB
⠇ Preparing packages... (31/33)
pyright ------------------------------ 3.48 MiB/5.31 MiB
playwright ------------------------------ 41.92 MiB/43.05 MiB
⠇ Preparing packages... (31/33)
pyright ------------------------------ 3.51 MiB/5.31 MiB
⠇ Preparing packages... (31/33)
pyright ------------------------------ 3.64 MiB/5.31 MiB
⠇ Preparing packages... (31/33)
pyright ------------------------------ 3.90 MiB/5.31 MiB
⠋ Preparing packages... (32/33)
pyright ------------------------------ 4.25 MiB/5.31 MiB
⠋ Preparing packages... (32/33)
pyright ------------------------------ 4.42 MiB/5.31 MiB
⠋ Preparing packages... (32/33)
pyright ------------------------------ 4.57 MiB/5.31 MiB
⠋ Preparing packages... (32/33)
Prepared 33 packages in 1.76s
░░░░░░░░░░░░░░░░░░░░ [0/0] Installing wheels...
░░░░░░░░░░░░░░░░░░░░ [0/33] Installing wheels...
░░░░░░░░░░░░░░░░░░░░ [0/33] six==1.17.0
░░░░░░░░░░░░░░░░░░░░ [1/33] six==1.17.0
░░░░░░░░░░░░░░░░░░░░ [1/33] pytest-base-url==2.1.0
█░░░░░░░░░░░░░░░░░░░ [2/33] pytest-base-url==2.1.0
█░░░░░░░░░░░░░░░░░░░ [2/33] pluggy==1.6.0
█░░░░░░░░░░░░░░░░░░░ [3/33] pluggy==1.6.0
█░░░░░░░░░░░░░░░░░░░ [3/33] idna==3.10
██░░░░░░░░░░░░░░░░░░ [4/33] idna==3.10
██░░░░░░░░░░░░░░░░░░ [4/33] markupsafe==3.0.2
███░░░░░░░░░░░░░░░░░ [5/33] markupsafe==3.0.2
███░░░░░░░░░░░░░░░░░ [5/33] nodeenv==1.9.1
███░░░░░░░░░░░░░░░░░ [6/33] nodeenv==1.9.1
███░░░░░░░░░░░░░░░░░ [6/33] iniconfig==2.1.0
████░░░░░░░░░░░░░░░░ [7/33] iniconfig==2.1.0
████░░░░░░░░░░░░░░░░ [7/33] text-unidecode==1.3
████░░░░░░░░░░░░░░░░ [8/33] text-unidecode==1.3
████░░░░░░░░░░░░░░░░ [8/33] flask==3.1.1
█████░░░░░░░░░░░░░░░ [9/33] flask==3.1.1
███████████████████░ [32/33] pyright==1.1.400
Installed 33 packages in 83ms
+ blinker==1.9.0
+ certifi==2025.4.26
+ charset-normalizer==3.4.2
+ click==8.2.0
+ duckdb==1.2.2
+ execnet==2.1.1
+ flask==3.1.1
+ greenlet==3.2.2
+ idna==3.10
+ iniconfig==2.1.0
+ itsdangerous==2.2.0
+ jinja2==3.1.6
+ markupsafe==3.0.2
+ nodeenv==1.9.1
+ packaging==25.0
+ playwright==1.52.0
+ pluggy==1.6.0
+ pyee==13.0.0
+ pyright==1.1.400
+ pytest==8.3.5
+ pytest-base-url==2.1.0
+ pytest-playwright==0.7.0
+ pytest-xdist==3.6.1
+ python-dateutil==2.9.0.post0
+ python-slugify==8.0.4
+ requests==2.32.3
+ ruff==0.11.10
+ scubaduck==0.1.0 (from file:///workspace/scubaduck)
+ six==1.17.0
+ text-unidecode==1.3
+ typing-extensions==4.13.2
+ urllib3==2.4.0
+ werkzeug==3.1.3
++ source .venv/bin/activate
+++ '[' -z '' ']'
+++ '[' -n x ']'
+++ SCRIPT_PATH=.venv/bin/activate
+++ '[' .venv/bin/activate = /tmp/xSRPMj-setup_script.sh ']'
+++ deactivate nondestructive
+++ unset -f pydoc
+++ '[' -z '' ']'
+++ '[' -z '' ']'
+++ hash -r
+++ '[' -z '' ']'
+++ unset VIRTUAL_ENV
+++ unset VIRTUAL_ENV_PROMPT
+++ '[' '!' nondestructive = nondestructive ']'
+++ VIRTUAL_ENV=/workspace/scubaduck/.venv
+++ '[' linux-gnu = cygwin ']'
+++ '[' linux-gnu = msys ']'
+++ export VIRTUAL_ENV
+++ '[' -z '' ']'
+++ unset SCRIPT_PATH
+++ _OLD_VIRTUAL_PATH=/root/.cargo/bin:/root/.rbenv/shims:/root/.rbenv/bin:/root/.rbenv/shims:/root/.local/share/swiftly/bin:/root/.bun/bin:/root/.nvm/versions/node/v22.15.1/bin:/root/.pyenv/shims:3441PYENV_ROOT/shims:/root/.pyenv/bin:/usr/local/go/bin:/root/go/bin:/root/.rbenv/bin:/root/.rbenv/shims:/root/.bun/bin:/root/.local/bin:/root/.pyenv/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
+++ PATH=/workspace/scubaduck/.venv/bin:/root/.cargo/bin:/root/.rbenv/shims:/root/.rbenv/bin:/root/.rbenv/shims:/root/.local/share/swiftly/bin:/root/.bun/bin:/root/.nvm/versions/node/v22.15.1/bin:/root/.pyenv/shims:3441PYENV_ROOT/shims:/root/.pyenv/bin:/usr/local/go/bin:/root/go/bin:/root/.rbenv/bin:/root/.rbenv/shims:/root/.bun/bin:/root/.local/bin:/root/.pyenv/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
+++ export PATH
+++ '[' xscubaduck '!=' x ']'
+++ VIRTUAL_ENV_PROMPT='(scubaduck) '
+++ export VIRTUAL_ENV_PROMPT
+++ '[' -z '' ']'
+++ '[' -z '' ']'
+++ _OLD_VIRTUAL_PS1=
+++ PS1='(scubaduck) '
+++ export PS1
+++ alias pydoc
+++ true
+++ hash -r
++ playwright install chromium
Downloading Chromium 136.0.7103.25 (playwright build v1169) from https://cdn.playwright.dev/dbazure/download/playwright/builds/chromium/1169/chromium-linux.zip
167.7 MiB [] 0% 0.0s167.7 MiB [] 0% 29.7s167.7 MiB [] 0% 31.8s167.7 MiB [] 0% 20.7s167.7 MiB [] 0% 13.2s167.7 MiB [] 0% 8.2s167.7 MiB [] 1% 6.1s167.7 MiB [] 2% 4.7s167.7 MiB [] 3% 3.3s167.7 MiB [] 5% 2.6s167.7 MiB [] 6% 2.5s167.7 MiB [] 7% 2.3s167.7 MiB [] 8% 2.0s167.7 MiB [] 10% 1.9s167.7 MiB [] 11% 1.7s167.7 MiB [] 13% 1.5s167.7 MiB [] 15% 1.4s167.7 MiB [] 16% 1.4s167.7 MiB [] 18% 1.3s167.7 MiB [] 20% 1.2s167.7 MiB [] 21% 1.2s167.7 MiB [] 23% 1.1s167.7 MiB [] 25% 1.0s167.7 MiB [] 27% 1.0s167.7 MiB [] 29% 1.0s167.7 MiB [] 30% 1.0s167.7 MiB [] 31% 0.9s167.7 MiB [] 33% 0.9s167.7 MiB [] 34% 0.9s167.7 MiB [] 36% 0.8s167.7 MiB [] 38% 0.8s167.7 MiB [] 40% 0.8s167.7 MiB [] 41% 0.7s167.7 MiB [] 43% 0.7s167.7 MiB [] 45% 0.7s167.7 MiB [] 46% 0.7s167.7 MiB [] 48% 0.6s167.7 MiB [] 49% 0.6s167.7 MiB [] 51% 0.6s167.7 MiB [] 52% 0.6s167.7 MiB [] 54% 0.6s167.7 MiB [] 55% 0.5s167.7 MiB [] 57% 0.5s167.7 MiB [] 59% 0.5s167.7 MiB [] 62% 0.4s167.7 MiB [] 64% 0.4s167.7 MiB [] 65% 0.4s167.7 MiB [] 67% 0.4s167.7 MiB [] 69% 0.3s167.7 MiB [] 72% 0.3s167.7 MiB [] 73% 0.3s167.7 MiB [] 75% 0.3s167.7 MiB [] 77% 0.3s167.7 MiB [] 79% 0.2s167.7 MiB [] 81% 0.2s167.7 MiB [] 82% 0.2s167.7 MiB [] 83% 0.2s167.7 MiB [] 85% 0.2s167.7 MiB [] 87% 0.1s167.7 MiB [] 89% 0.1s167.7 MiB [] 91% 0.1s167.7 MiB [] 94% 0.1s167.7 MiB [] 97% 0.0s167.7 MiB [] 99% 0.0s167.7 MiB [] 100% 0.0s
Chromium 136.0.7103.25 (playwright build v1169) downloaded to /root/.cache/ms-playwright/chromium-1169
Downloading FFMPEG playwright build v1011 from https://cdn.playwright.dev/dbazure/download/playwright/builds/ffmpeg/1011/ffmpeg-linux.zip
2.3 MiB [] 0% 0.0s2.3 MiB [] 3% 0.6s2.3 MiB [] 11% 0.3s2.3 MiB [] 24% 0.2s2.3 MiB [] 48% 0.1s2.3 MiB [] 100% 0.0s
FFMPEG playwright build v1011 downloaded to /root/.cache/ms-playwright/ffmpeg-1011
Downloading Chromium Headless Shell 136.0.7103.25 (playwright build v1169) from https://cdn.playwright.dev/dbazure/download/playwright/builds/chromium/1169/chromium-headless-shell-linux.zip
101.4 MiB [] 0% 0.0s101.4 MiB [] 0% 17.8s101.4 MiB [] 0% 17.5s101.4 MiB [] 0% 12.0s101.4 MiB [] 0% 7.2s101.4 MiB [] 1% 4.4s101.4 MiB [] 3% 2.4s101.4 MiB [] 5% 2.2s101.4 MiB [] 6% 1.9s101.4 MiB [] 9% 1.4s101.4 MiB [] 11% 1.3s101.4 MiB [] 13% 1.2s101.4 MiB [] 16% 1.0s101.4 MiB [] 19% 0.9s101.4 MiB [] 22% 0.8s101.4 MiB [] 25% 0.7s101.4 MiB [] 25% 0.8s101.4 MiB [] 27% 0.8s101.4 MiB [] 28% 0.8s101.4 MiB [] 30% 0.7s101.4 MiB [] 34% 0.6s101.4 MiB [] 36% 0.6s101.4 MiB [] 39% 0.6s101.4 MiB [] 42% 0.5s101.4 MiB [] 45% 0.5s101.4 MiB [] 48% 0.4s101.4 MiB [] 51% 0.4s101.4 MiB [] 55% 0.4s101.4 MiB [] 58% 0.3s101.4 MiB [] 59% 0.3s101.4 MiB [] 62% 0.3s101.4 MiB [] 66% 0.3s101.4 MiB [] 69% 0.2s101.4 MiB [] 73% 0.2s101.4 MiB [] 77% 0.2s101.4 MiB [] 81% 0.1s101.4 MiB [] 85% 0.1s101.4 MiB [] 88% 0.1s101.4 MiB [] 90% 0.1s101.4 MiB [] 94% 0.0s101.4 MiB [] 98% 0.0s101.4 MiB [] 100% 0.0s
Chromium Headless Shell 136.0.7103.25 (playwright build v1169) downloaded to /root/.cache/ms-playwright/chromium_headless_shell-1169
++ echo 'source .venv/bin/activate'
I'll check the root AGENTS.md for coding guidelines to help solve the issue.
bash: .venv/bin/activate: No such file or directory
root@74ff72a61187:/workspace# ls
scubaduck
root@74ff72a61187:/workspace# cd scubaduck
root@74ff72a61187:/workspace/scubaduck# ls
AGENTS.md codex_setup.sh scubaduck tests
README.md pyproject.toml stubs uv.lock
root@74ff72a61187:/workspace/scubaduck# cat AGENTS.md
- Use "source .venv/bin/activate" to activate the virtual environment before
running any commands
- ONLY use non-interactive commands like cat, sed, apply_patch to do edits.
Do NOT use interactive editors.
- Do NOT attempt to install packages. Only the packages specified in
pyproject.toml are available. You cannot add new packages. If you
desperately want another package, make a note of it in the final PR
description.
- Use conventional commits to format PR title
- There are no nested AGENTS.md files, this is the only agents file
- When using Playwright, ONLY use chromium browser. This browser is already
installed.
- Use "ruff check" to check lint, "ruff format" to autoformat files and
"pyright" to typecheck.
- When writing the PR description, include the original prompt supplied by the
user.
- When you add functionality to the server, add server tests to
tests/test_server.py. When you add features to the frontend, add frontend
tests to tests/test_web.py
I see the AGENTS file has commands to activate the environment and run checks. Now, onto fixing the bug!
root@74ff72a61187:/workspace/scubaduck# ls scubaduck
__init__.py sample.csv server.py static
root@74ff72a61187:/workspace/scubaduck# sed -n '1,160p' scubaduck/server.py
from __future__ import annotations
from dataclasses import dataclass, field, replace
from typing import Any, Dict, List, Tuple, cast
import re
from datetime import datetime, timedelta, timezone
import time
from pathlib import Path
import os
import sqlite3
import traceback
import math
import duckdb
from dateutil import parser as dtparser
from flask import Flask, jsonify, request, send_from_directory
@dataclass
class Filter:
column: str
op: str
value: str | int | float | list[str] | None
@dataclass
class QueryParams:
start: str | None = None
end: str | None = None
order_by: str | None = None
order_dir: str = "ASC"
limit: int | None = None
columns: list[str] = field(default_factory=lambda: [])
filters: list[Filter] = field(default_factory=lambda: [])
derived_columns: dict[str, str] = field(default_factory=lambda: {})
graph_type: str = "samples"
group_by: list[str] = field(default_factory=lambda: [])
aggregate: str | None = None
show_hits: bool = False
x_axis: str | None = None
granularity: str = "Auto"
fill: str = "0"
table: str = "events"
def _normalize_sqlite_type(sql: str) -> str:
"""Map arbitrary SQLite column types to DuckDB-compatible types."""
t = sql.strip().upper()
if "(" in t:
t = t.split("(", 1)[0]
if "INT" in t:
return "INTEGER"
if any(key in t for key in ("CHAR", "CLOB", "TEXT")):
return "VARCHAR"
if "BLOB" in t:
return "BLOB"
if any(key in t for key in ("DOUBLE", "REAL", "FLOA", "NUMERIC", "DECIMAL"))
:
return "DOUBLE"
if "BOOL" in t:
return "BOOLEAN"
if "DATE" in t or "TIME" in t:
return "TIMESTAMP" if "TIME" in t else "DATE"
return "VARCHAR"
def _load_database(path: Path) -> duckdb.DuckDBPyConnection:
if not path.exists():
raise FileNotFoundError(path)
ext = path.suffix.lower()
if ext == ".csv":
con = duckdb.connect()
con.execute(
f"CREATE TABLE events AS SELECT * FROM read_csv_auto('{path.as_posix
()}')"
)
elif ext in {".db", ".sqlite"}:
con = duckdb.connect()
try:
con.execute("LOAD sqlite")
con.execute(f"ATTACH '{path.as_posix()}' AS db (TYPE SQLITE)")
tables = [
r[0]
for r in con.execute(
"SELECT name FROM db.sqlite_master WHERE type='table'"
).fetchall()
]
for t in tables:
con.execute(f'CREATE VIEW "{t}" AS SELECT * FROM db."{t}"')
except Exception:
sconn = sqlite3.connect(path)
tables = [
r[0]
for r in sconn.execute(
"SELECT name FROM sqlite_master WHERE type='table'"
).fetchall()
]
for t in tables:
info = sconn.execute(f'PRAGMA table_info("{t}")').fetchall()
col_defs = ", ".join(
f"{r[1]} {_normalize_sqlite_type(cast(str, r[2]))}" for r in
info
)
con.execute(f'CREATE TABLE "{t}" ({col_defs})')
placeholders = ",".join("?" for _ in info)
for row in sconn.execute(f'SELECT * FROM "{t}"'):
con.execute(f'INSERT INTO "{t}" VALUES ({placeholders})', ro
w)
sconn.close()
else:
con = duckdb.connect(path)
return con
_REL_RE = re.compile(
r"([+-]?\d+(?:\.\d*)?)\s*(hour|hours|day|days|week|weeks|fortnight|fortnight
s)",
re.IGNORECASE,
)
def parse_time(val: str | None) -> str | None:
"""Parse an absolute or relative time string into ``YYYY-MM-DD HH:MM:SS``.""
"
if val is None or val == "":
return None
s = val.strip()
if s.lower() == "now":
dt = datetime.now(timezone.utc)
return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S")
m = _REL_RE.fullmatch(s)
if m:
qty = float(m.group(1))
unit = m.group(2).lower()
delta: timedelta
if unit.startswith("hour"):
delta = timedelta(hours=qty)
elif unit.startswith("day"):
delta = timedelta(days=qty)
elif unit.startswith("week"):
delta = timedelta(weeks=qty)
elif unit.startswith("fortnight"):
delta = timedelta(weeks=2 * qty)
else: # pragma: no cover - defensive
raise ValueError(f"Unsupported unit: {unit}")
dt = datetime.now(timezone.utc) + delta
return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S")
dt = dtparser.parse(s)
return dt.replace(microsecond=0, tzinfo=None).strftime("%Y-%m-%d %H:%M:%S")
def _granularity_seconds(granularity: str, start: str | None, end: str | None) -
> int:
gran = granularity.lower()
mapping = {
"1 second": 1,
"5 seconds": 5,
"10 seconds": 10,
"30 seconds": 30,
"1 minute": 60,
"4 minutes": 240,
"5 minutes": 300,
root@74ff72a61187:/workspace/scubaduck# grep -n '_load_database' -n scubaduck/se
rver.py
68:def _load_database(path: Path) -> duckdb.DuckDBPyConnection:
310: con = _load_database(db_path)
root@74ff72a61187:/workspace/scubaduck# sed -n '86,140p' scubaduck/server.py
"SELECT name FROM db.sqlite_master WHERE type='table'"
).fetchall()
]
for t in tables:
con.execute(f'CREATE VIEW "{t}" AS SELECT * FROM db."{t}"')
except Exception:
sconn = sqlite3.connect(path)
tables = [
r[0]
for r in sconn.execute(
"SELECT name FROM sqlite_master WHERE type='table'"
).fetchall()
]
for t in tables:
info = sconn.execute(f'PRAGMA table_info("{t}")').fetchall()
col_defs = ", ".join(
f"{r[1]} {_normalize_sqlite_type(cast(str, r[2]))}" for r in
info
)
con.execute(f'CREATE TABLE "{t}" ({col_defs})')
placeholders = ",".join("?" for _ in info)
for row in sconn.execute(f'SELECT * FROM "{t}"'):
con.execute(f'INSERT INTO "{t}" VALUES ({placeholders})', ro
w)
sconn.close()
else:
con = duckdb.connect(path)
return con
_REL_RE = re.compile(
r"([+-]?\d+(?:\.\d*)?)\s*(hour|hours|day|days|week|weeks|fortnight|fortnight
s)",
re.IGNORECASE,
)
def parse_time(val: str | None) -> str | None:
"""Parse an absolute or relative time string into ``YYYY-MM-DD HH:MM:SS``.""
"
if val is None or val == "":
return None
s = val.strip()
if s.lower() == "now":
dt = datetime.now(timezone.utc)
return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S")
m = _REL_RE.fullmatch(s)
if m:
qty = float(m.group(1))
unit = m.group(2).lower()
delta: timedelta
if unit.startswith("hour"):
delta = timedelta(hours=qty)
elif unit.startswith("day"):
delta = timedelta(days=qty)
elif unit.startswith("week"):
delta = timedelta(weeks=qty)
elif unit.startswith("fortnight"):
I think the issue arises when SQLite types get mapped incorrectly. I need to verify if "INTEGER" maps to 32-bit "INTEGER" in DuckDB, or should be "BIGINT" to avoid overflow.
root@74ff72a61187:/workspace/scubaduck# grep -n "_normalize_sqlite_type" -n -r
scubaduck/server.py:48:def _normalize_sqlite_type(sql: str) -> str:
scubaduck/server.py:102: f"{r[1]} {_normalize_sqlite_type(cas
t(str, r[2]))}" for r in info
root@74ff72a61187:/workspace/scubaduck# sed -n '40,70p' scubaduck/server.py
aggregate: str | None = None
show_hits: bool = False
x_axis: str | None = None
granularity: str = "Auto"
fill: str = "0"
table: str = "events"
def _normalize_sqlite_type(sql: str) -> str:
"""Map arbitrary SQLite column types to DuckDB-compatible types."""
t = sql.strip().upper()
if "(" in t:
t = t.split("(", 1)[0]
if "INT" in t:
return "INTEGER"
if any(key in t for key in ("CHAR", "CLOB", "TEXT")):
return "VARCHAR"
if "BLOB" in t:
return "BLOB"
if any(key in t for key in ("DOUBLE", "REAL", "FLOA", "NUMERIC", "DECIMAL"))
:
return "DOUBLE"
if "BOOL" in t:
return "BOOLEAN"
if "DATE" in t or "TIME" in t:
return "TIMESTAMP" if "TIME" in t else "DATE"
return "VARCHAR"
def _load_database(path: Path) -> duckdb.DuckDBPyConnection:
if not path.exists():
raise FileNotFoundError(path)
I'll replace "INTEGER" with "BIGINT" and check for tests related to that update.
root@74ff72a61187:/workspace/scubaduck# ls tests
conftest.py test_server.py test_web.py
root@74ff72a61187:/workspace/scubaduck# sed -n '1,160p' tests/test_server.py
from __future__ import annotations
import json
from pathlib import Path
from typing import cast
import duckdb
from scubaduck import server
import pytest
def test_basic_query() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-02 00:00:00",
"order_by": "timestamp",
"order_dir": "ASC",
"limit": 10,
"columns": ["timestamp", "event", "value", "user"],
"filters": [],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert data
rows = data["rows"]
# We expect first three rows (until 2024-01-02 00:00:00)
assert len(rows) == 3
assert rows[0][1] == "login"
assert rows[1][1] == "logout"
def test_js_served() -> None:
app = server.app
client = app.test_client()
rv = client.get("/js/chip_input.js")
assert rv.status_code == 200
assert b"initChipInput" in rv.data
def test_filter_multi_token() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-02 03:00:00",
"order_by": "timestamp",
"limit": 10,
"columns": ["timestamp", "event", "value", "user"],
"filters": [{"column": "user", "op": "=", "value": ["alice", "charlie"]}
],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert data
rows = data["rows"]
# Should only return rows for alice and charlie
assert len(rows) == 3
assert rows[0][3] == "alice"
assert rows[-1][3] == "charlie"
def test_empty_filter_is_noop() -> None:
app = server.app
client = app.test_client()
base_payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"limit": 100,
"columns": ["timestamp", "event", "value", "user"],
}
no_filter = {**base_payload, "filters": []}
empty_filter = {
**base_payload,
"filters": [{"column": "user", "op": "=", "value": None}],
}
rv1 = client.post(
"/api/query", data=json.dumps(no_filter), content_type="application/json
"
)
rv2 = client.post(
"/api/query", data=json.dumps(empty_filter), content_type="application/j
son"
)
rows1 = rv1.get_json()["rows"]
rows2 = rv2.get_json()["rows"]
assert rows1 == rows2
def test_select_columns() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"order_by": "timestamp",
"limit": 10,
"columns": ["timestamp", "user"],
"filters": [],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert data
rows = data["rows"]
assert len(rows[0]) == 2
assert rows[0][1] == "alice"
def test_string_filter_ops() -> None:
app = server.app
client = app.test_client()
base = {
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"order_by": "timestamp",
"limit": 100,
"columns": ["timestamp", "event", "value", "user"],
}
contains = {
**base,
"filters": [{"column": "user", "op": "contains", "value": "ali"}],
}
rv = client.post(
"/api/query", data=json.dumps(contains), content_type="application/json"
)
rows = rv.get_json()["rows"]
assert all("ali" in r[3] for r in rows)
regex = {
**base,
"filters": [{"column": "user", "op": "~", "value": "^a.*"}],
}
rv = client.post(
"/api/query", data=json.dumps(regex), content_type="application/json"
)
rows = rv.get_json()["rows"]
assert all(r[3].startswith("a") for r in rows)
assert len(rows) == 2
not_empty = {**base, "filters": [{"column": "user", "op": "!empty"}]}
rv = client.post(
"/api/query", data=json.dumps(not_empty), content_type="application/json
"
)
assert len(rv.get_json()["rows"]) == 4
def _make_payload() -> dict[str, object]:
return {
"table": "events",
"start": "2024-01-01 00:00:00",
I'm reviewing tests to find any integer operations or column type references.
root@74ff72a61187:/workspace/scubaduck# sed -n '160,320p' tests/test_server.py
"start": "2024-01-01 00:00:00",
"end": "2024-01-02 00:00:00",
"order_by": "timestamp",
"order_dir": "ASC",
"limit": 10,
"columns": ["timestamp", "event", "value", "user"],
"filters": [],
}
def test_database_types(tmp_path: Path) -> None:
csv_file = tmp_path / "events.csv"
csv_file.write_text(Path("scubaduck/sample.csv").read_text())
sqlite_file = tmp_path / "events.sqlite"
import sqlite3
conn = sqlite3.connect(sqlite_file)
conn.execute(
"CREATE TABLE events (timestamp TEXT, event TEXT, value INTEGER, user TE
XT)"
)
with open(csv_file) as f:
next(f)
for line in f:
ts, ev, val, user = line.strip().split(",")
conn.execute(
"INSERT INTO events VALUES (?, ?, ?, ?)", (ts, ev, int(val), use
r)
)
conn.commit()
conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce
ssIssue]
duckdb_file = tmp_path / "events.duckdb"
con = duckdb.connect(duckdb_file)
con.execute(
f"CREATE TABLE events AS SELECT * FROM read_csv_auto('{csv_file.as_posix
()}')"
)
con.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcces
sIssue]
for db in (csv_file, sqlite_file, duckdb_file):
app = server.create_app(db)
client = app.test_client()
payload = _make_payload()
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/js
on"
)
rows = rv.get_json()["rows"]
assert len(rows) == 3
def test_sqlite_longvarchar(tmp_path: Path, monkeypatch: pytest.MonkeyPatch) ->
None:
sqlite_file = tmp_path / "events.sqlite"
import sqlite3
conn = sqlite3.connect(sqlite_file)
conn.execute(
"CREATE TABLE events (timestamp TEXT, url LONGVARCHAR, title VARCHAR(10)
)"
)
conn.execute(
"INSERT INTO events VALUES ('2024-01-01 00:00:00', 'https://a.com', 'Hom
e')"
)
conn.commit()
conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce
ssIssue]
from typing import Any
real_connect = duckdb.connect
def failing_connect(*args: Any, **kwargs: Any) -> Any:
real = real_connect(*args, **kwargs)
class Wrapper:
def __init__(self, con: duckdb.DuckDBPyConnection) -> None:
self.con = con
self._failed = False
def execute(self, sql: str, *a: Any, **kw: Any):
if not self._failed and sql == "LOAD sqlite":
self._failed = True
raise RuntimeError("fail")
return self.con.execute(sql, *a, **kw)
def __getattr__(self, name: str) -> object:
return getattr(self.con, name)
return Wrapper(real)
monkeypatch.setattr(server.duckdb, "connect", failing_connect)
app = server.create_app(sqlite_file)
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-01 01:00:00",
"order_by": "timestamp",
"columns": ["timestamp", "url", "title"],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert data["rows"][0][1] == "https://a.com"
def test_envvar_db(monkeypatch: pytest.MonkeyPatch, tmp_path: Path) -> None:
csv_file = tmp_path / "custom.csv"
csv_file.write_text("timestamp,event,value,user\n2024-01-01 00:00:00,login,5
,bob\n")
monkeypatch.setenv("SCUBADUCK_DB", str(csv_file))
app = server.create_app()
client = app.test_client()
payload = _make_payload()
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
rows = rv.get_json()["rows"]
assert len(rows) == 1
def test_envvar_db_missing(monkeypatch: pytest.MonkeyPatch, tmp_path: Path) -> N
one:
missing = tmp_path / "missing.sqlite"
monkeypatch.setenv("SCUBADUCK_DB", str(missing))
with pytest.raises(FileNotFoundError):
server.create_app()
def test_group_by_table() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"graph_type": "table",
"order_by": "user",
"limit": 10,
"columns": ["value"],
"group_by": ["user"],
"aggregate": "Sum",
"show_hits": True,
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
rows = rv.get_json()["rows"]
assert rows[0][0] == "alice"
assert rows[0][1] == 2
assert rows[0][2] == 40
def test_relative_time_query(monkeypatch: pytest.MonkeyPatch) -> None:
app = server.app
client = app.test_client()
from datetime import datetime
fixed_now = datetime(2024, 1, 2, 4, 0, 0)
class FixedDateTime(datetime):
@classmethod
def now(cls, tz=None): # type: ignore[override]
I'm paging through the tests to make sure I reach the end and confirm everything.
root@74ff72a61187:/workspace/scubaduck# sed -n '320,640p' tests/test_server.py
def now(cls, tz=None): # type: ignore[override]
return fixed_now if tz is None else fixed_now.astimezone(tz)
monkeypatch.setattr(server, "datetime", FixedDateTime)
payload = {
"table": "events",
"start": "-1 hour",
"end": "now",
"order_by": "timestamp",
"limit": 100,
"columns": ["timestamp", "event", "value", "user"],
"filters": [],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert len(data["rows"]) == 1
assert data["rows"][0][3] == "charlie"
def test_invalid_time_error() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "nonsense",
"end": "now",
"order_by": "timestamp",
"limit": 10,
"columns": ["timestamp"],
"filters": [],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 400
assert "error" in data
def test_query_error_returns_sql_and_traceback() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"columns": ["event"],
"group_by": ["user"],
"aggregate": "avg",
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 400
assert "error" in data
def test_table_unknown_column_error() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"graph_type": "table",
"order_by": "timestamp",
"limit": 100,
"columns": ["user", "Hits", "value"],
"group_by": ["user"],
"aggregate": "Count",
"show_hits": True,
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 400
assert "Unknown column" in data["error"]
def test_samples_view_rejects_group_by() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"graph_type": "samples",
"group_by": ["user"],
"columns": ["timestamp"],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 400
assert "only valid" in data["error"]
def test_table_avg_with_timestamp() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"graph_type": "table",
"order_by": "user",
"limit": 100,
"columns": ["user", "timestamp", "value"],
"group_by": ["user"],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert "error" not in data
rows = data["rows"]
assert rows[0][0] == "alice"
...
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert len(data["rows"]) == 2
assert all(r[1] == "alice" for r in data["rows"])
def test_timeseries_auto_and_fine_buckets() -> None:
app = server.app
client = app.test_client()
def run(gran: str) -> None:
payload = {
"start": "2024-01-01 00:00:00",
"end": "2024-01-02 03:00:00",
"graph_type": "timeseries",
"columns": ["value"],
"x_axis": "timestamp",
"granularity": gran,
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/js
on"
)
data = rv.get_json()
assert rv.status_code == 200
from dateutil import parser
start = parser.parse(cast(str, payload["start"])).replace(tzinfo=None)
buckets = [
parser.parse(cast(str, r[0])).replace(tzinfo=None) for r in data["ro
ws"]
]
assert buckets[0] == start
if len(buckets) > 1:
step = (buckets[1] - buckets[0]).total_seconds()
assert step % data["bucket_size"] == 0
assert any(r[1] != 0 for r in data["rows"])
run("Auto")
run("Fine")
def test_timeseries_string_column_error() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"graph_type": "timeseries",
"limit": 7,
"columns": ["timestamp", "event", "value", "user"],
"x_axis": "timestamp",
"granularity": "1 hour",
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 400
assert "Aggregate" in data["error"]
def test_derived_column_basic() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"limit": 10,
"columns": ["timestamp"],
"derived_columns": {"val2": "value * 2"},
"filters": [],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert data["rows"][0][1] == 20
def test_timeseries_derived_column() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"graph_type": "timeseries",
"granularity": "1 hour",
"limit": 7,
"columns": ["value"],
"derived_columns": {"derived_1": "value * 2"},
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
rows = data["rows"]
assert all(r[2] == r[1] * 2 for r in rows)
def test_default_start_end_returned() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"order_by": "timestamp",
"limit": 5,
"columns": ["timestamp"],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert data["start"] == "2024-01-01 00:00:00"
assert data["end"] == "2024-01-02 03:00:00"
I'm skimming to the end of the tests to see if anything else is there.
root@74ff72a61187:/workspace/scubaduck# sed -n '640,960p' tests/test_server.py
I'll adjust _normalize_sqlite_type
to return "BIGINT" and verify the tests pass.
root@74ff72a61187:/workspace/scubaduck# cat scubaduck/sample.csv
timestamp,event,value,user
2024-01-01 00:00:00,login,10,alice
2024-01-01 01:00:00,logout,20,bob
2024-01-02 00:00:00,login,30,alice
2024-01-02 03:00:00,login,40,charlie
The issue occurs when SQLite has big integers, causing DuckDB to fail in fallback. I'll add a test to simulate this.
root@74ff72a61187:/workspace/scubaduck# grep -n 'longvarchar' -n tests/test_serv
er.py
209:def test_sqlite_longvarchar(tmp_path: Path, monkeypatch: pytest.MonkeyPatch)
-> None:
root@74ff72a61187:/workspace/scubaduck# sed -n '200,240p' tests/test_server.py
client = app.test_client()
payload = _make_payload()
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/js
on"
)
rows = rv.get_json()["rows"]
assert len(rows) == 3
def test_sqlite_longvarchar(tmp_path: Path, monkeypatch: pytest.MonkeyPatch) ->
None:
sqlite_file = tmp_path / "events.sqlite"
import sqlite3
conn = sqlite3.connect(sqlite_file)
conn.execute(
"CREATE TABLE events (timestamp TEXT, url LONGVARCHAR, title VARCHAR(10)
)"
)
conn.execute(
"INSERT INTO events VALUES ('2024-01-01 00:00:00', 'https://a.com', 'Hom
e')"
)
conn.commit()
conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce
ssIssue]
from typing import Any
real_connect = duckdb.connect
def failing_connect(*args: Any, **kwargs: Any) -> Any:
real = real_connect(*args, **kwargs)
class Wrapper:
def __init__(self, con: duckdb.DuckDBPyConnection) -> None:
self.con = con
self._failed = False
def execute(self, sql: str, *a: Any, **kw: Any):
if not self._failed and sql == "LOAD sqlite":
self._failed = True
raise RuntimeError("fail")
return self.con.execute(sql, *a, **kw)
return getattr(self.con, name)
return Wrapper(real)
monkeypatch.setattr(server.duckdb, "connect", failing_connect)
app = server.create_app(sqlite_file)
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-01 01:00:00",
"order_by": "timestamp",
"columns": ["timestamp", "url", "title"],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert data["rows"][0][1] == "https://a.com"
def test_envvar_db(monkeypatch: pytest.MonkeyPatch, tmp_path: Path) -> None:
csv_file = tmp_path / "custom.csv"
csv_file.write_text("timestamp,event,value,user\n2024-01-01 00:00:00,login,5
,bob\n")
monkeypatch.setenv("SCUBADUCK_DB", str(csv_file))
app = server.create_app()
client = app.test_client()
payload = _make_payload()
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
rows = rv.get_json()["rows"]
assert len(rows) == 1
def test_envvar_db_missing(monkeypatch: pytest.MonkeyPatch, tmp_path: Path) -> N
one:
missing = tmp_path / "missing.sqlite"
monkeypatch.setenv("SCUBADUCK_DB", str(missing))
with pytest.raises(FileNotFoundError):
server.create_app()
def test_group_by_table() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"graph_type": "table",
"order_by": "user",
"limit": 10,
"columns": ["value"],
"group_by": ["user"],
"aggregate": "Sum",
"show_hits": True,
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
rows = rv.get_json()["rows"]
assert rows[0][0] == "alice"
assert rows[0][1] == 2
assert rows[0][2] == 40
def test_relative_time_query(monkeypatch: pytest.MonkeyPatch) -> None:
app = server.app
client = app.test_client()
from datetime import datetime
fixed_now = datetime(2024, 1, 2, 4, 0, 0)
class FixedDateTime(datetime):
@classmethod
def now(cls, tz=None): # type: ignore[override]
I'm planning a test using SQLite's events
table with a large integer, 13385262862605259. I'll simulate the error from the longvarchar test by setting up duckdb.connect to fail. Then, I'll query the table to verify the integer retrieval works as expected. Searching for _make_payload to check column setup.
root@74ff72a61187:/workspace/scubaduck# grep -n '_make_payload' -n tests/test_se
rver.py
157:def _make_payload() -> dict[str, object]:
201: payload = _make_payload()
271: payload = _make_payload()
return {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-02 00:00:00",
"order_by": "timestamp",
"order_dir": "ASC",
"limit": 10,
"columns": ["timestamp", "event", "value", "user"],
"filters": [],
}
def test_database_types(tmp_path: Path) -> None:
csv_file = tmp_path / "events.csv"
csv_file.write_text(Path("scubaduck/sample.csv").read_text())
sqlite_file = tmp_path / "events.sqlite"
import sqlite3
conn = sqlite3.connect(sqlite_file)
conn.execute(
"CREATE TABLE events (timestamp TEXT, event TEXT, value INTEGER, user TE
XT)"
)
with open(csv_file) as f:
next(f)
for line in f:
ts, ev, val, user = line.strip().split(",")
conn.execute(
"INSERT INTO events VALUES (?, ?, ?, ?)", (ts, ev, int(val), use
r)
)
conn.commit()
conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce
ssIssue]
duckdb_file = tmp_path / "events.duckdb"
con = duckdb.connect(duckdb_file)
con.execute(
f"CREATE TABLE events AS SELECT * FROM read_csv_auto('{csv_file.as_posix
()}')"
)
con.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcces
sIssue]
for db in (csv_file, sqlite_file, duckdb_file):
app = server.create_app(db)
client = app.test_client()
payload = _make_payload()
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/js
on"
)
rows = rv.get_json()["rows"]
assert len(rows) == 3
I’ll create a new test for the big integer in a table, using SQLite with minimal payload.
I’ll check whether a timestamp is needed or if default start/end handles it automatically.
root@74ff72a61187:/workspace/scubaduck# grep -n 'default_start_end' -n scubaduck
/server.py
I'll take a look around the server.create_app to understand its structure.
root@74ff72a61187:/workspace/scubaduck# grep -n 'create_app' -n scubaduck/server
.py
303:def create_app(db_file: str | Path | None = None) -> Flask:
571:app = create_app()
elif op == "!empty":
where_parts.append(f"{f.column} != {val}")
else:
where_parts.append(f"{f.column} {op} {val}")
if where_parts:
query += " WHERE " + " AND ".join(where_parts)
if group_cols:
query += " GROUP BY " + ", ".join(group_cols)
if params.order_by:
query += f" ORDER BY {params.order_by} {params.order_dir}"
elif params.graph_type == "timeseries":
query += " ORDER BY bucket"
if params.limit is not None:
query += f" LIMIT {params.limit}"
return query
def create_app(db_file: str | Path | None = None) -> Flask:
app = Flask(__name__, static_folder="static")
if db_file is None:
env_db = os.environ.get("SCUBADUCK_DB")
if env_db:
db_file = env_db
db_path = Path(db_file or Path(__file__).with_name("sample.csv")).resolve()
con = _load_database(db_path)
tables = [r[0] for r in con.execute("SHOW TABLES").fetchall()]
if not tables:
raise ValueError("No tables found in database")
default_table = tables[0]
columns_cache: Dict[str, Dict[str, str]] = {}
def get_columns(table: str) -> Dict[str, str]:
if table not in columns_cache:
rows = con.execute(f'PRAGMA table_info("{table}")').fetchall()
if not rows:
raise ValueError(f"Unknown table: {table}")
columns_cache[table] = {r[1]: r[2] for r in rows}
return columns_cache[table]
sample_cache: Dict[Tuple[str, str, str], Tuple[List[str], float]] = {}
CACHE_TTL = 60.0
CACHE_LIMIT = 200
@app.route("/")
def index() -> Any: # pyright: ignore[reportUnusedFunction]
assert app.static_folder is not None
return send_from_directory(app.static_folder, "index.html")
@app.route("/js/<path:filename>")
def js(filename: str) -> Any: # pyright: ignore[reportUnusedFunction]
assert app.static_folder is not None
I'm moving up to look at the _construct_query function now.
root@74ff72a61187:/workspace/scubaduck# grep -n '_construct_query' -n scubaduck/
server.py
I'll check more lines, around 120 to 200, to find the query-building functions.
root@74ff72a61187:/workspace/scubaduck# grep -n 'get_columns' -n scubaduck/serve
r.py
317: def get_columns(table: str) -> Dict[str, str]:
372: column_types = get_columns(table)
422: column_types = get_columns(params.table)
root@74ff72a61187:/workspace/scubaduck# sed -n '360,444p' scubaduck/server.py
def _cache_set(key: Tuple[str, str, str], vals: List[str]) -> None:
sample_cache[key] = (vals, time.time())
if len(sample_cache) > CACHE_LIMIT:
oldest = min(sample_cache.items(), key=lambda kv: kv[1][1])[0]
del sample_cache[oldest]
@app.route("/api/samples")
def sample_values() -> Any: # pyright: ignore[reportUnusedFunction]
table = request.args.get("table", default_table)
column = request.args.get("column")
substr = request.args.get("q", "")
column_types = get_columns(table)
if not column or column not in column_types:
return jsonify([])
ctype = column_types[column].upper()
if "CHAR" not in ctype and "STRING" not in ctype and "VARCHAR" not in ct
ype:
return jsonify([])
key = (table, column, substr)
cached = _cache_get(key)
if cached is not None:
return jsonify(cached)
rows = con.execute(
f"SELECT DISTINCT {column} FROM \"{table}\" WHERE CAST({column} AS V
ARCHAR) ILIKE '%' || ? || '%' LIMIT 20",
[substr],
).fetchall()
values = [r[0] for r in rows]
_cache_set(key, values)
return jsonify(values)
@app.route("/api/query", methods=["POST"])
def query() -> Any: # pyright: ignore[reportUnusedFunction]
payload = request.get_json(force=True)
try:
start = parse_time(payload.get("start"))
end = parse_time(payload.get("end"))
except Exception as exc:
return jsonify({"error": str(exc)}), 400
params = QueryParams(
start=start,
end=end,
order_by=payload.get("order_by"),
order_dir=payload.get("order_dir", "ASC"),
limit=payload.get("limit"),
columns=payload.get("columns", []),
derived_columns=payload.get("derived_columns", {}),
graph_type=payload.get("graph_type", "samples"),
group_by=payload.get("group_by", []),
aggregate=payload.get("aggregate"),
show_hits=payload.get("show_hits", False),
x_axis=payload.get("x_axis"),
granularity=payload.get("granularity", "Auto"),
fill=payload.get("fill", "0"),
table=payload.get("table", default_table),
)
for f in payload.get("filters", []):
params.filters.append(Filter(f["column"], f["op"], f.get("value")))
if params.table not in tables:
return jsonify({"error": "Invalid table"}), 400
column_types = get_columns(params.table)
if params.graph_type not in {"table", "timeseries"} and (
params.group_by or params.aggregate or params.show_hits
):
return (
jsonify(
{
"error": "group_by, aggregate and show_hits are only val
id for table or timeseries view"
}
),
400,
)
valid_cols = set(column_types.keys())
valid_cols.update(params.derived_columns.keys())
if params.graph_type == "timeseries":
if params.x_axis is None:
for cand in ["time", "timestamp"]:
if cand in valid_cols:
params.x_axis = cand
break
if params.x_axis is None or params.x_axis not in valid_cols:
I'm moving ahead to see more content.
root@74ff72a61187:/workspace/scubaduck# sed -n '444,528p' scubaduck/server.py
if params.x_axis is None or params.x_axis not in valid_cols:
return jsonify({"error": "Invalid x_axis"}), 400
ctype = column_types.get(params.x_axis, "").upper()
if not any(t in ctype for t in ["TIMESTAMP", "DATE", "TIME"]):
return jsonify({"error": "x_axis must be a time column"}), 400
for col in params.columns:
if col not in valid_cols:
return jsonify({"error": f"Unknown column: {col}"}), 400
for col in params.group_by:
if col not in valid_cols:
return jsonify({"error": f"Unknown column: {col}"}), 400
if params.order_by and params.order_by not in valid_cols:
return jsonify({"error": f"Unknown column: {params.order_by}"}), 400
if params.group_by or params.graph_type == "timeseries":
agg = (params.aggregate or "avg").lower()
if agg.startswith("p") or agg == "sum":
need_numeric = True
allow_time = False
elif agg == "avg" or agg in {"min", "max"}:
need_numeric = False
allow_time = True
else:
need_numeric = False
allow_time = False
if need_numeric or allow_time:
for c in params.columns:
if c in params.group_by or c == params.x_axis:
continue
if c not in column_types:
continue
ctype = column_types.get(c, "").upper()
is_numeric = any(
t in ctype
for t in [
"INT",
"DECIMAL",
"REAL",
"DOUBLE",
"FLOAT",
"NUMERIC",
"HUGEINT",
]
)
is_time = "TIMESTAMP" in ctype or "DATE" in ctype or "TIME"
in ctype
if need_numeric and not is_numeric:
return (
jsonify(
{
"error": f"Aggregate {agg} cannot be applied
to column {c}",
}
),
400,
)
if allow_time and not (is_numeric or is_time):
return (
jsonify(
{
"error": f"Aggregate {agg} cannot be applied
to column {c}",
}
),
400,
)
if params.start is None or params.end is None:
axis = params.x_axis or "timestamp"
row = cast(
tuple[datetime | None, datetime | None],
con.execute(
f'SELECT min({axis}), max({axis}) FROM "{params.table}"'
).fetchall()[0],
)
mn, mx = row
if params.start is None and mn is not None:
params.start = (
mn.strftime("%Y-%m-%d %H:%M:%S") if not isinstance(mn, str)
else mn
)
if params.end is None and mx is not None:
params.end = (
mx.strftime("%Y-%m-%d %H:%M:%S") if not isinstance(mx, str)
else mx
)
bucket_size: int | None = None
if params.graph_type == "timeseries":
bucket_size = _granularity_seconds(
params.granularity,
I need to scroll a little more to capture all the relevant content.
root@74ff72a61187:/workspace/scubaduck# sed -n '528,612p' scubaduck/server.py
params.granularity,
params.start if isinstance(params.start, str) else None,
params.end if isinstance(params.end, str) else None,
)
if (
params.limit is not None
and params.start is not None
and params.end is not None
):
try:
start_dt = dtparser.parse(params.start)
end_dt = dtparser.parse(params.end)
buckets = math.ceil(
(end_dt - start_dt).total_seconds() / bucket_size
)
if buckets > 1:
params.limit *= buckets
except Exception:
pass
sql = build_query(params, column_types)
try:
rows = con.execute(sql).fetchall()
except Exception as exc:
tb = traceback.format_exc()
print(f"Query failed:\n{sql}\n{tb}")
return (
jsonify({"sql": sql, "error": str(exc), "traceback": tb}),
400,
)
result: Dict[str, Any] = {"sql": sql, "rows": rows}
if params.start is not None:
result["start"] = str(params.start)
if params.end is not None:
result["end"] = str(params.end)
if bucket_size is not None:
result["bucket_size"] = bucket_size
return jsonify(result)
return app
app = create_app()
if __name__ == "__main__":
app.run(debug=True)
I'll create a table, insert a row with a big integer, and test database loading.
I'll create a minimal dataset with a big integer to test SQLite to DuckDB loading.
I'll update the mapping to return "BIGINT" for "INT" types, handling edge cases along the way.
, real-time database part of Scuba is quite difficult (and expensive) to replica
te, but I also really like Scuba's UI for doing queries, and I have found myself
wishing that I have access to it even for "small" databases, e.g., I have a sql
ite dataset I want to explore.
Pivotal ideas:
* Time series by default. In the dedicated "time series" view, there are many fe
atures specifically oriented towards working towards tables that represent event
s that occurred over time: the start, end, compare, aggregate and granularity fi
elds all specially privilege the timestamp field. In fact, you can't log events
to Scuba's backing data store without a timestamp, they always come with one. (S
cuba also supports other views that don't presuppose a time series, but the time
series is the most beloved and well used view.) This is in contrast to typical
software which tries to generalize to arbitrary data first, with time series bei
ng added on later.
* It's all about exploration. Scuba is predicated on the idea that you don't kno
w what you're looking for, that you are going to spend time tweaking queries and
changing filters/grouping as part of an investigation to figure out why a syste
m behaves the way it is. So the filters/comparisons/groupings you want to edit a
re always visible on the left sidebar, with the expectation that you're going to
tweak the query to look at something else. Similarly, all the parameters of you
r query get saved into your URL, so your browser history can double up as a quer
y history / you can easily share a query with someone else. This is contrast to
typical software which is often oriented to making pretty dashboards and reports
. (This function is important too, but it's not what I want in exploration mode!
)
* You can fix data problems in the query editor. It's pretty common to have mess
ed up and ended up with a database that doesn't have exactly the columns you nee
d, or some columns that are corrupted in some way. Scuba has pretty robust suppo
rt for defining custom columns with arbitrary SQL functions, grouping over them
as if they were native functions, and doing so with minimal runtime cost (Scuba
aims to turn around your query in milliseconds!) Having to go and run a huge dat
a pipeline to fix your data is a big impediment to exploration; quick and easy c
ustom columns means you can patch over problems when you're investigating and fi
x them for real later.
We're going to build a exploratory data analysis tool like Scuba for time series
database (i.e., a database with a mandatory timestamp representing the time an
event occurred). We'll use DuckDB as the underlying SQL engine served from a Py
thon server, and render the GUI/results as a webpage with vanilla HTML and JS. W
e'll use choices.js to support token inputs. We define a token input to mean a
text input element where as you type a dropdown displays with valid values, and
if you select one or press enter, the selection turns into a token/chip that can
only be deleted as one unit.
To start, we are going to support one views: samples. The samples view only all
ows you to view individual samples from the database, subject to a filter. Our m
ain UI concept is that there is a left sidebar that is the query editor, and the
right side that shows the view. The sidebar is always visible and defaults to
the query parameters of the current view. After you make changes to the query,
clicking the "Dive" button updates the view. The URL of the page encodes all of
the values of the query (and gets updated when you Dive), so the browser's back
button lets you view previous queries.
The query editor's job is to generate a SQL query, which then is applied on the
database, and then the result visualized according to the view.
Here are the settings you can apply to the query. The help text should show up w
hen you mouse over the field name:
* Start/End - Help text: "Sets the start/end of the time range to query. Can be
any kind of datetime string. For example: 'April 23, 2014' or 'yesterday'." The
UI for this selector supports both relative selections (now, -1 hour, -3 hours,
-12 hours, -1 day, -3 days, -1 week, -1 fortnight, -30 days, -90 days) as well a
s specifying an absolute date. The way this field is rendered is there is a fre
e form text box, a drop down arrow (for the relative selectors), and then a cale
ndar button (for date selection).
* Order By - Help text: "Choose a column to sort results by." There is an ASC/D
ESC toggle next to it.
* Limit - Help text: "Choose the maximum number of results to show in the chart
after any aggregations have been applied. For example, a limit of 10 will show
no more than 10 rows for a table, etc."
* Filters - You can create as many filters as you want. You can either write a f
ilter using a UI or manual SQL. In the UI, filter consists of a column name, a r
elation (e.g., =, !=, <, >) and then a text field. The text field is a token inp
ut. It accepts multiple tokens for = relation, in which case we match using an O
R for all options.
There is also a "Columns" tab which lets you view all fields in the table, organ
ized by their type. You can also define derived columns, by specifying a column
name and SQL expression. Derived columns can be used for all parts of the UI, in
cluding filters/group by/etc. Columns have checkboxes indicating if we should SE
LECT them or not. Each selected column shows up in the graph. There is an All/N
one link which can be used to select/deselect all checkboxes.
The query UI constructs a SQL query that intuitively has this form:
```
SELECT column, column, ...,
FROM table
WHERE time >= min-timestamp
AND time <= max-timestamp
[AND condition ...]
ORDER BY aggregate(column)
LIMIT number
```
You should write tests for the server backend, demonstrating that at specific qu
ery values we get back the correct rows of data.
## Running the server
Activate the virtual environment and run the Flask development server:
```bash
flask --app scubaduck.server run --debug
```
By default the server loads `sample.csv`. Set the `SCUBADUCK_DB` environment
variable to point at a different database file (CSV, SQLite or DuckDB) if you
want to use another dataset. If the file does not exist, the server will raise
a `FileNotFoundError` during startup.
I checked the first 265 lines of the README and want to inspect the remainder.
root@74ff72a61187:/workspace/scubaduck# tail -n 20 README.md
AND time <= max-timestamp
[AND condition ...]
ORDER BY aggregate(column)
LIMIT number
```
You should write tests for the server backend, demonstrating that at specific qu
ery values we get back the correct rows of data.
## Running the server
Activate the virtual environment and run the Flask development server:
```bash
flask --app scubaduck.server run --debug
```
By default the server loads `sample.csv`. Set the `SCUBADUCK_DB` environment
variable to point at a different database file (CSV, SQLite or DuckDB) if you
want to use another dataset. If the file does not exist, the server will raise
a `FileNotFoundError` during startup.
I'll implement the fix and run ruff check, ruff format, and pyright.
root@74ff72a61187:/workspace/scubaduck# git status --short
root@74ff72a61187:/workspace/scubaduck# source .venv/bin/activate
(scubaduck) root@74ff72a61187:/workspace/scubaduck# ruff check
All checks passed!
(scubaduck) root@74ff72a61187:/workspace/scubaduck# ruff format --check
6 files already formatted
(scubaduck) root@74ff72a61187:/workspace/scubaduck# pyright
0 errors, 0 warnings, 0 informations
(scubaduck) root@74ff72a61187:/workspace/scubaduck#
The baseline tests are passing, so I'll go ahead and make changes to server.py.
(scubaduck) root@74ff72a61187:/workspace/scubaduck# sed -n '54,60p' scubaduck/se
rver.py
return "INTEGER"
if any(key in t for key in ("CHAR", "CLOB", "TEXT")):
return "VARCHAR"
if "BLOB" in t:
return "BLOB"
if any(key in t for key in ("DOUBLE", "REAL", "FLOA", "NUMERIC", "DECIMAL"))
:
return "DOUBLE"
(scubaduck) root@74ff72a61187:/workspace/scubaduck# sed -n '50,66p' scubaduck/se
rver.py
t = sql.strip().upper()
if "(" in t:
t = t.split("(", 1)[0]
if "INT" in t:
return "INTEGER"
if any(key in t for key in ("CHAR", "CLOB", "TEXT")):
return "VARCHAR"
if "BLOB" in t:
return "BLOB"
if any(key in t for key in ("DOUBLE", "REAL", "FLOA", "NUMERIC", "DECIMAL"))
:
return "DOUBLE"
if "BOOL" in t:
return "BOOLEAN"
if "DATE" in t or "TIME" in t:
return "TIMESTAMP" if "TIME" in t else "DATE"
return "VARCHAR"
(scubaduck) root@74ff72a61187:/workspace/scubaduck#
I’ll modify the return statement to give "BIGINT" as the output.
(scubaduck) root@74ff72a61187:/workspace/scubaduck# apply_patch<<'PATCH'
> *** Begin Patch
> *** Update File: scubaduck/server.py
> @@
> t = sql.strip().upper()
> if "(" in t:
> t = t.split("(", 1)[0]
> if "INT" in t:
> - return "INTEGER"
> + # SQLite only has a single INTEGER type which is always 64-bit.
> + # Use DuckDB's BIGINT to avoid overflow when values exceed INT32.
> + return "BIGINT"
> *** End Patch
> PATCH
Success. Updated the following files:
M scubaduck/server.py
(scubaduck) root@74ff72a61187:/workspace/scubaduck#
I’ll open lines 200-240 in test_server.py to replicate the failing wrapper for the big int test.
_server.py
client = app.test_client()
payload = _make_payload()
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/js
on"
)
rows = rv.get_json()["rows"]
assert len(rows) == 3
def test_sqlite_longvarchar(tmp_path: Path, monkeypatch: pytest.MonkeyPatch) ->
None:
sqlite_file = tmp_path / "events.sqlite"
import sqlite3
conn = sqlite3.connect(sqlite_file)
conn.execute(
"CREATE TABLE events (timestamp TEXT, url LONGVARCHAR, title VARCHAR(10)
)"
)
conn.execute(
"INSERT INTO events VALUES ('2024-01-01 00:00:00', 'https://a.com', 'Hom
e')"
)
conn.commit()
conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce
ssIssue]
from typing import Any
real_connect = duckdb.connect
def failing_connect(*args: Any, **kwargs: Any) -> Any:
real = real_connect(*args, **kwargs)
class Wrapper:
def __init__(self, con: duckdb.DuckDBPyConnection) -> None:
self.con = con
self._failed = False
def execute(self, sql: str, *a: Any, **kw: Any):
if not self._failed and sql == "LOAD sqlite":
self._failed = True
raise RuntimeError("fail")
return self.con.execute(sql, *a, **kw)
(scubaduck) root@74ff72a61187:/workspace/scubaduck# sed -n '240,280p' tests/test
_server.py
def __getattr__(self, name: str) -> object:
return getattr(self.con, name)
return Wrapper(real)
monkeypatch.setattr(server.duckdb, "connect", failing_connect)
app = server.create_app(sqlite_file)
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-01 01:00:00",
"order_by": "timestamp",
"columns": ["timestamp", "url", "title"],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert data["rows"][0][1] == "https://a.com"
def test_envvar_db(monkeypatch: pytest.MonkeyPatch, tmp_path: Path) -> None:
csv_file = tmp_path / "custom.csv"
csv_file.write_text("timestamp,event,value,user\n2024-01-01 00:00:00,login,5
,bob\n")
monkeypatch.setenv("SCUBADUCK_DB", str(csv_file))
app = server.create_app()
client = app.test_client()
payload = _make_payload()
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
rows = rv.get_json()["rows"]
assert len(rows) == 1
def test_envvar_db_missing(monkeypatch: pytest.MonkeyPatch, tmp_path: Path) -> N
one:
missing = tmp_path / "missing.sqlite"
with pytest.raises(FileNotFoundError):
server.create_app()
def test_group_by_table() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"graph_type": "table",
"order_by": "user",
"limit": 10,
"columns": ["value"],
"group_by": ["user"],
"aggregate": "Sum",
"show_hits": True,
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
rows = rv.get_json()["rows"]
assert rows[0][0] == "alice"
assert rows[0][1] == 2
assert rows[0][2] == 40
def test_relative_time_query(monkeypatch: pytest.MonkeyPatch) -> None:
app = server.app
client = app.test_client()
from datetime import datetime
fixed_now = datetime(2024, 1, 2, 4, 0, 0)
class FixedDateTime(datetime):
@classmethod
def now(cls, tz=None): # type: ignore[override]
return fixed_now if tz is None else fixed_now.astimezone(tz)
monkeypatch.setattr(server, "datetime", FixedDateTime)
payload = {
"table": "events",
"start": "-1 hour",
"end": "now",
"order_by": "timestamp",
"limit": 100,
"columns": ["timestamp", "event", "value", "user"],
"filters": [],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert len(data["rows"]) == 1
assert data["rows"][0][3] == "charlie"
def test_invalid_time_error() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "nonsense",
"end": "now",
"order_by": "timestamp",
"limit": 10,
"columns": ["timestamp"],
"filters": [],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 400
assert "error" in data
(scubaduck) root@74ff72a61187:/workspace/scubaduck#
I'll add a new test after test_sqlite_longvarchar
and craft the patch.
(scubaduck) root@74ff72a61187:/workspace/scubaduck# grep -n 'test_sqlite_longvar
char' -n -n tests/test_server.py
209:def test_sqlite_longvarchar(tmp_path: Path, monkeypatch: pytest.MonkeyPatch)
-> None:
(scubaduck) root@74ff72a61187:/workspace/scubaduck#
Time to open the patch and add the new test.
_server.py
def test_sqlite_longvarchar(tmp_path: Path, monkeypatch: pytest.MonkeyPatch) ->
None:
sqlite_file = tmp_path / "events.sqlite"
import sqlite3
conn = sqlite3.connect(sqlite_file)
conn.execute(
"CREATE TABLE events (timestamp TEXT, url LONGVARCHAR, title VARCHAR(10)
)"
)
conn.execute(
"INSERT INTO events VALUES ('2024-01-01 00:00:00', 'https://a.com', 'Hom
e')"
)
conn.commit()
conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce
ssIssue]
from typing import Any
real_connect = duckdb.connect
def failing_connect(*args: Any, **kwargs: Any) -> Any:
real = real_connect(*args, **kwargs)
class Wrapper:
def __init__(self, con: duckdb.DuckDBPyConnection) -> None:
self.con = con
self._failed = False
def execute(self, sql: str, *a: Any, **kw: Any):
if not self._failed and sql == "LOAD sqlite":
self._failed = True
raise RuntimeError("fail")
return self.con.execute(sql, *a, **kw)
(scubaduck) root@74ff72a61187:/workspace/scubaduck# sed -n '240,266p' tests/test
_server.py
def __getattr__(self, name: str) -> object:
return getattr(self.con, name)
return Wrapper(real)
monkeypatch.setattr(server.duckdb, "connect", failing_connect)
app = server.create_app(sqlite_file)
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-01 01:00:00",
"order_by": "timestamp",
"columns": ["timestamp", "url", "title"],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert data["rows"][0][1] == "https://a.com"
def test_envvar_db(monkeypatch: pytest.MonkeyPatch, tmp_path: Path) -> None:
csv_file = tmp_path / "custom.csv"
(scubaduck) root@74ff72a61187:/workspace/scubaduck#
I'll add the new test right after test_sqlite_longvarchar
, at line 236 or 255.
_server.py
conn.commit()
conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce
ssIssue]
from typing import Any
real_connect = duckdb.connect
def failing_connect(*args: Any, **kwargs: Any) -> Any:
real = real_connect(*args, **kwargs)
class Wrapper:
def __init__(self, con: duckdb.DuckDBPyConnection) -> None:
self.con = con
self._failed = False
def execute(self, sql: str, *a: Any, **kw: Any):
if not self._failed and sql == "LOAD sqlite":
self._failed = True
raise RuntimeError("fail")
return self.con.execute(sql, *a, **kw)
def __getattr__(self, name: str) -> object:
return getattr(self.con, name)
return Wrapper(real)
monkeypatch.setattr(server.duckdb, "connect", failing_connect)
app = server.create_app(sqlite_file)
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-01 01:00:00",
"order_by": "timestamp",
"columns": ["timestamp", "url", "title"],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
data = rv.get_json()
assert rv.status_code == 200
assert data["rows"][0][1] == "https://a.com"
def test_envvar_db(monkeypatch: pytest.MonkeyPatch, tmp_path: Path) -> None:
csv_file = tmp_path / "custom.csv"
csv_file.write_text("timestamp,event,value,user\n2024-01-01 00:00:00,login,5
,bob\n")
monkeypatch.setenv("SCUBADUCK_DB", str(csv_file))
app = server.create_app()
client = app.test_client()
payload = _make_payload()
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
rows = rv.get_json()["rows"]
assert len(rows) == 1
def test_envvar_db_missing(monkeypatch: pytest.MonkeyPatch, tmp_path: Path) -> N
one:
missing = tmp_path / "missing.sqlite"
monkeypatch.setenv("SCUBADUCK_DB", str(missing))
with pytest.raises(FileNotFoundError):
server.create_app()
def test_group_by_table() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"graph_type": "table",
"order_by": "user",
"limit": 10,
"columns": ["value"],
"group_by": ["user"],
"aggregate": "Sum",
"show_hits": True,
}
(scubaduck) root@74ff72a61187:/workspace/scubaduck#
I'll add a new test after asserting the URL at data['rows'][0][1]
.
> *** Update File: tests/test_server.py
> @@
> assert data["rows"][0][1] == "https://a.com"
> +
> +
> +def test_sqlite_bigint(tmp_path: Path, monkeypatch: pytest.MonkeyPatch) -> No
ne:
> + sqlite_file = tmp_path / "big.sqlite"
> + import sqlite3
> +
> + conn = sqlite3.connect(sqlite_file)
> + conn.execute(
> + "CREATE TABLE events (timestamp TEXT, value INTEGER)"
> + )
> + big_value = 13385262862605259
> + conn.execute(
> + "INSERT INTO events VALUES ('2024-01-01 00:00:00', ?)",
> + (big_value,),
> + )
> + conn.commit()
> + conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeA
ccessIssue]
> +
> + from typing import Any
> +
> + real_connect = duckdb.connect
> +
> + def failing_connect(*args: Any, **kwargs: Any) -> Any:
> + real = real_connect(*args, **kwargs)
> +
> + class Wrapper:
> + def __init__(self, con: duckdb.DuckDBPyConnection) -> None:
> + self.con = con
> + self._failed = False
> +
> + def execute(self, sql: str, *a: Any, **kw: Any):
> + if not self._failed and sql == "LOAD sqlite":
> + self._failed = True
> + raise RuntimeError("fail")
> + return self.con.execute(sql, *a, **kw)
> +
> + def __getattr__(self, name: str) -> object:
> + return getattr(self.con, name)
> +
> + return Wrapper(real)
> +
> + monkeypatch.setattr(server.duckdb, "connect", failing_connect)
> +
> + app = server.create_app(sqlite_file)
> + client = app.test_client()
> + payload = {
> + "table": "events",
> + "order_by": "timestamp",
> + "columns": ["timestamp", "value"],
> + }
> + rv = client.post(
> + "/api/query", data=json.dumps(payload), content_type="application/jso
n"
> + )
> + data = rv.get_json()
> + assert rv.status_code == 200
> + assert data["rows"][0][1] == big_value
> *** End Patch
> PATCH
Success. Updated the following files:
M tests/test_server.py
(scubaduck) root@74ff72a61187:/workspace/scubaduck#
Time to use ruff format and clean up the code automatically.
(scubaduck) root@74ff72a61187:/workspace/scubaduck# ruff format scubaduck/server
.py tests/test_server.py
1 file reformatted, 1 file left unchanged
(scubaduck) root@74ff72a61187:/workspace/scubaduck#
I need to perform a ruff check on the code now.
(scubaduck) root@74ff72a61187:/workspace/scubaduck# ruff check scubaduck/server.
py tests/test_server.py
All checks passed!
(scubaduck) root@74ff72a61187:/workspace/scubaduck# pyright
0 errors, 0 warnings, 0 informations
(scubaduck) root@74ff72a61187:/workspace/scubaduck# pytest -q
bringing up nodes...
........................................................................ [ 94%]
.... [100%]
76 passed in 10.72s
(scubaduck) root@74ff72a61187:/workspace/scubaduck#
Tests are good, so I'll go ahead and commit the changes now.
(scubaduck) root@74ff72a61187:/workspace/scubaduck# git status --short
M scubaduck/server.py
M tests/test_server.py
(scubaduck) root@74ff72a61187:/workspace/scubaduck# git add scubaduck/server.py
tests/test_server.py
(scubaduck) root@74ff72a61187:/workspace/scubaduck# git commit -m "fix: support
large integers from sqlite" && git status --short
[work a0093fe] fix: support large integers from sqlite
2 files changed, 57 insertions(+), 1 deletion(-)
(scubaduck) root@74ff72a61187:/workspace/scubaduck# git status --short
(scubaduck) root@74ff72a61187:/workspace/scubaduck#
I'll write the PR message and reference the changed lines in server.py.
(scubaduck) root@74ff72a61187:/workspace/scubaduck# nl -ba scubaduck/server.py |
sed -n '50,62p'
50 t = sql.strip().upper()
51 if "(" in t:
52 t = t.split("(", 1)[0]
53 if "INT" in t:
54 # SQLite only has a single INTEGER type which is always 64-bit.
55 # Use DuckDB's BIGINT to avoid overflow when values exceed INT32
.
56 return "BIGINT"
57 if any(key in t for key in ("CHAR", "CLOB", "TEXT")):
58 return "VARCHAR"
59 if "BLOB" in t:
60 return "BLOB"
61 if any(key in t for key in ("DOUBLE", "REAL", "FLOA", "NUMERIC", "DE
CIMAL")):
62 return "DOUBLE"
(scubaduck) root@74ff72a61187:/workspace/scubaduck#
I'm starting on the new test lines now.
(scubaduck) root@74ff72a61187:/workspace/scubaduck# nl -ba tests/test_server.py
| sed -n '236,316p'
236 if not self._failed and sql == "LOAD sqlite":
237 self._failed = True
238 raise RuntimeError("fail")
239 return self.con.execute(sql, *a, **kw)
240
241 def __getattr__(self, name: str) -> object:
242 return getattr(self.con, name)
243
244 return Wrapper(real)
245
246 monkeypatch.setattr(server.duckdb, "connect", failing_connect)
247
248 app = server.create_app(sqlite_file)
249 client = app.test_client()
250 payload = {
251 "table": "events",
252 "start": "2024-01-01 00:00:00",
253 "end": "2024-01-01 01:00:00",
254 "order_by": "timestamp",
255 "columns": ["timestamp", "url", "title"],
256 }
257 rv = client.post(
258 "/api/query", data=json.dumps(payload), content_type="applicatio
n/json"
259 )
260 data = rv.get_json()
261 assert rv.status_code == 200
262 assert data["rows"][0][1] == "https://a.com"
263
264
265 def test_sqlite_bigint(tmp_path: Path, monkeypatch: pytest.MonkeyPatch)
-> None:
266 sqlite_file = tmp_path / "big.sqlite"
267 import sqlite3
268
269 conn = sqlite3.connect(sqlite_file)
270 conn.execute("CREATE TABLE events (timestamp TEXT, value INTEGER)")
271 big_value = 13385262862605259
272 conn.execute(
273 "INSERT INTO events VALUES ('2024-01-01 00:00:00', ?)",
274 (big_value,),
275 )
276 conn.commit()
277 conn.close() # pyright: ignore[reportUnknownMemberType, reportAttri
buteAccessIssue]
278
279 from typing import Any
280
281 real_connect = duckdb.connect
282
283 def failing_connect(*args: Any, **kwargs: Any) -> Any:
284 real = real_connect(*args, **kwargs)
285
286 class Wrapper:
287 def __init__(self, con: duckdb.DuckDBPyConnection) -> None:
288 self.con = con
289 self._failed = False
290
291 def execute(self, sql: str, *a: Any, **kw: Any):
292 if not self._failed and sql == "LOAD sqlite":
293 self._failed = True
294 raise RuntimeError("fail")
295 return self.con.execute(sql, *a, **kw)
296
297 def __getattr__(self, name: str) -> object:
298 return getattr(self.con, name)
299
300 return Wrapper(real)
301
302 monkeypatch.setattr(server.duckdb, "connect", failing_connect)
303
304 app = server.create_app(sqlite_file)
305 client = app.test_client()
306 payload = {
307 "table": "events",
308 "order_by": "timestamp",
309 "columns": ["timestamp", "value"],
310 }
311 rv = client.post(
312 "/api/query", data=json.dumps(payload), content_type="applicatio
n/json"
313 )
314 data = rv.get_json()
315 assert rv.status_code == 200
316 assert data["rows"][0][1] == big_value
(scubaduck) root@74ff72a61187:/workspace/scubaduck#
I'll summarize the changes and include the user's message in the PR body.