Codex Task Logs

Task ID: task_e_682fd4139be48323a97511b1cb54ca87

Environment setup
Configuring language runtimes... + rm -- /tmp/JAbv31-setup_script.sh + source ./codex_setup.sh ++ uv sync --frozen Using CPython 3.12.3 interpreter at: /usr/bin/python3.12 Creating virtual environment at: .venv Building scubaduck @ file:///workspace/scubaduck Downloading playwright (43.1MiB) Downloading pyright (5.3MiB) Downloading duckdb (19.3MiB) Downloading ruff (11.0MiB) Downloading ruff Built scubaduck @ file:///workspace/scubaduck Downloading duckdb Downloading playwright Downloading pyright Prepared 33 packages in 1.65s Installed 33 packages in 79ms + blinker==1.9.0 + certifi==2025.4.26 + charset-normalizer==3.4.2 + click==8.2.0 + duckdb==1.2.2 + execnet==2.1.1 + flask==3.1.1 + greenlet==3.2.2 + idna==3.10 + iniconfig==2.1.0 + itsdangerous==2.2.0 + jinja2==3.1.6 + markupsafe==3.0.2 + nodeenv==1.9.1 + packaging==25.0 + playwright==1.52.0 + pluggy==1.6.0 + pyee==13.0.0 + pyright==1.1.400 + pytest==8.3.5 + pytest-base-url==2.1.0 + pytest-playwright==0.7.0 + pytest-xdist==3.6.1 + python-dateutil==2.9.0.post0 + python-slugify==8.0.4 + requests==2.32.3 + ruff==0.11.10 + scubaduck==0.1.0 (from file:///workspace/scubaduck) + six==1.17.0 + text-unidecode==1.3 + typing-extensions==4.13.2 + urllib3==2.4.0 + werkzeug==3.1.3 ++ source .venv/bin/activate +++ '[' -z '' ']' +++ '[' -n x ']' +++ SCRIPT_PATH=.venv/bin/activate +++ '[' .venv/bin/activate = /tmp/JAbv31-setup_script.sh ']' +++ deactivate nondestructive +++ unset -f pydoc +++ '[' -z '' ']' +++ '[' -z '' ']' +++ hash -r +++ '[' -z '' ']' +++ unset VIRTUAL_ENV +++ unset VIRTUAL_ENV_PROMPT +++ '[' '!' nondestructive = nondestructive ']' +++ VIRTUAL_ENV=/workspace/scubaduck/.venv +++ '[' linux-gnu = cygwin ']' +++ '[' linux-gnu = msys ']' +++ export VIRTUAL_ENV +++ '[' -z '' ']' +++ unset SCRIPT_PATH +++ _OLD_VIRTUAL_PATH=/root/.cargo/bin:/root/.rbenv/shims:/root/.rbenv/bin:/root/.rbenv/shims:/root/.local/share/swiftly/bin:/root/.bun/bin:/root/.nvm/versions/node/v22.16.0/bin:/root/.pyenv/shims:3441PYENV_ROOT/shims:/root/.pyenv/bin:/usr/local/go/bin:/root/go/bin:/root/.rbenv/bin:/root/.rbenv/shims:/root/.bun/bin:/root/.local/bin:/root/.pyenv/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin +++ PATH=/workspace/scubaduck/.venv/bin:/root/.cargo/bin:/root/.rbenv/shims:/root/.rbenv/bin:/root/.rbenv/shims:/root/.local/share/swiftly/bin:/root/.bun/bin:/root/.nvm/versions/node/v22.16.0/bin:/root/.pyenv/shims:3441PYENV_ROOT/shims:/root/.pyenv/bin:/usr/local/go/bin:/root/go/bin:/root/.rbenv/bin:/root/.rbenv/shims:/root/.bun/bin:/root/.local/bin:/root/.pyenv/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin +++ export PATH +++ '[' xscubaduck '!=' x ']' +++ VIRTUAL_ENV_PROMPT=scubaduck +++ export VIRTUAL_ENV_PROMPT +++ '[' -z '' ']' +++ '[' -z '' ']' +++ _OLD_VIRTUAL_PS1= +++ PS1='(scubaduck) ' +++ export PS1 +++ alias pydoc +++ true +++ hash -r ++ python -c 'import os; import duckdb; con = duckdb.connect(); con.execute(f"SET http_proxy = '\''{os.getenv("HTTP_PROXY")}'\''"); con.execute("INSTALL '\''sqlite'\'';")' ++ playwright install chromium Downloading Chromium 136.0.7103.25 (playwright build v1169) from https://cdn.playwright.dev/dbazure/download/playwright/builds/chromium/1169/chromium-linux.zip 167.7 MiB [] 0% 0.0s167.7 MiB [] 0% 31.7s167.7 MiB [] 0% 19.5s167.7 MiB [] 0% 14.4s167.7 MiB [] 0% 9.9s167.7 MiB [] 1% 6.4s167.7 MiB [] 2% 4.6s167.7 MiB [] 3% 3.2s167.7 MiB [] 4% 2.6s167.7 MiB [] 5% 2.4s167.7 MiB [] 6% 2.3s167.7 MiB [] 8% 2.0s167.7 MiB [] 10% 1.8s167.7 MiB [] 11% 1.6s167.7 MiB [] 13% 1.5s167.7 MiB [] 14% 1.4s167.7 MiB [] 15% 1.4s167.7 MiB [] 17% 1.3s167.7 MiB [] 20% 1.2s167.7 MiB [] 21% 1.1s167.7 MiB [] 24% 1.0s167.7 MiB [] 26% 1.0s167.7 MiB [] 29% 0.9s167.7 MiB [] 31% 0.8s167.7 MiB [] 33% 0.8s167.7 MiB [] 34% 0.8s167.7 MiB [] 36% 0.8s167.7 MiB [] 38% 0.7s167.7 MiB [] 40% 0.7s167.7 MiB [] 41% 0.7s167.7 MiB [] 43% 0.7s167.7 MiB [] 45% 0.6s167.7 MiB [] 47% 0.6s167.7 MiB [] 49% 0.6s167.7 MiB [] 50% 0.6s167.7 MiB [] 52% 0.5s167.7 MiB [] 54% 0.5s167.7 MiB [] 55% 0.5s167.7 MiB [] 57% 0.5s167.7 MiB [] 59% 0.5s167.7 MiB [] 61% 0.4s167.7 MiB [] 63% 0.4s167.7 MiB [] 64% 0.4s167.7 MiB [] 67% 0.4s167.7 MiB [] 70% 0.3s167.7 MiB [] 71% 0.3s167.7 MiB [] 73% 0.3s167.7 MiB [] 75% 0.3s167.7 MiB [] 77% 0.2s167.7 MiB [] 79% 0.2s167.7 MiB [] 80% 0.2s167.7 MiB [] 82% 0.2s167.7 MiB [] 85% 0.2s167.7 MiB [] 87% 0.1s167.7 MiB [] 89% 0.1s167.7 MiB [] 91% 0.1s167.7 MiB [] 92% 0.1s167.7 MiB [] 95% 0.0s167.7 MiB [] 97% 0.0s167.7 MiB [] 99% 0.0s167.7 MiB [] 100% 0.0s Chromium 136.0.7103.25 (playwright build v1169) downloaded to /root/.cache/ms-playwright/chromium-1169 Downloading FFMPEG playwright build v1011 from https://cdn.playwright.dev/dbazure/download/playwright/builds/ffmpeg/1011/ffmpeg-linux.zip 2.3 MiB [] 0% 0.0s2.3 MiB [] 5% 0.3s2.3 MiB [] 17% 0.2s2.3 MiB [] 53% 0.0s2.3 MiB [] 100% 0.0s FFMPEG playwright build v1011 downloaded to /root/.cache/ms-playwright/ffmpeg-1011 Downloading Chromium Headless Shell 136.0.7103.25 (playwright build v1169) from https://cdn.playwright.dev/dbazure/download/playwright/builds/chromium/1169/chromium-headless-shell-linux.zip 101.4 MiB [] 0% 0.0s101.4 MiB [] 0% 20.0s101.4 MiB [] 0% 13.6s101.4 MiB [] 0% 8.8s101.4 MiB [] 1% 5.5s101.4 MiB [] 2% 3.1s101.4 MiB [] 4% 2.3s101.4 MiB [] 6% 1.7s101.4 MiB [] 9% 1.3s101.4 MiB [] 11% 1.2s101.4 MiB [] 13% 1.1s101.4 MiB [] 16% 1.0s101.4 MiB [] 19% 0.8s101.4 MiB [] 22% 0.7s101.4 MiB [] 26% 0.6s101.4 MiB [] 30% 0.6s101.4 MiB [] 35% 0.5s101.4 MiB [] 38% 0.5s101.4 MiB [] 41% 0.4s101.4 MiB [] 43% 0.4s101.4 MiB [] 47% 0.4s101.4 MiB [] 50% 0.3s101.4 MiB [] 54% 0.3s101.4 MiB [] 57% 0.3s101.4 MiB [] 61% 0.2s101.4 MiB [] 62% 0.2s101.4 MiB [] 65% 0.2s101.4 MiB [] 69% 0.2s101.4 MiB [] 73% 0.2s101.4 MiB [] 76% 0.1s101.4 MiB [] 79% 0.1s101.4 MiB [] 83% 0.1s101.4 MiB [] 87% 0.1s101.4 MiB [] 90% 0.1s101.4 MiB [] 93% 0.0s101.4 MiB [] 96% 0.0s101.4 MiB [] 99% 0.0s101.4 MiB [] 100% 0.0s Chromium Headless Shell 136.0.7103.25 (playwright build v1169) downloaded to /root/.cache/ms-playwright/chromium_headless_shell-1169 ++ echo 'source .venv/bin/activate'
Internet turned off
There are some bugs with Time Column / Start / End. Here is how to repro with TEST dataset. 1. Go to Samples, set Time Column's time unit to s. It says Out of Range Error: Overflow in multiplication of INT32 (1704067200 * 1000000)! First, we should have done this in INT64 precision. 2. Go to Samples, set Time Column's time unit to us (bypassing the problem above). Dive. We expect two entries, but there are none. It appears the Start/End is not calculated correctly Add a test for these two cases and then fix it.

I'll check the root directory for an AGENTS.md file.

shell
bash: .venv/bin/activate: No such file or directory root@df946f6027ab:/workspace# ls scubaduck
root@df946f6027ab:/workspace# cd scubaduck root@df946f6027ab:/workspace/scubaduck# ls AGENTS.md codex_setup.sh scubaduck tests README.md pyproject.toml stubs uv.lock
root@df946f6027ab:/workspace/scubaduck# cat AGENTS.md - Use "source .venv/bin/activate" to activate the virtual environment before running any commands - ONLY use non-interactive commands like cat, sed, apply_patch to do edits. Do NOT use interactive editors. - Do NOT attempt to install packages. Only the packages specified in pyproject.toml are available. You cannot add new packages. If you desperately want another package, make a note of it in the final PR description. - Use conventional commits to format PR title - There are no nested AGENTS.md files, this is the only agents file - When using Playwright, ONLY use chromium browser. This browser is already installed. - Use "ruff check" to check lint, "ruff format" to autoformat files and "pyright" to typecheck. - When writing the PR description, include the original prompt supplied by the user. - When you add functionality to the server, add server tests to tests/test_server.py. When you add features to the frontend, add frontend tests to tests/test_web.py

The AGENTS file has clear instructions. I'll examine codex_setup.sh next for setup details.

shell
root@df946f6027ab:/workspace/scubaduck# cat codex_setup.sh uv sync --frozen source .venv/bin/activate python -c "import os; import duckdb; con = duckdb.connect(); con.execute(f\"SET http_proxy = '{os.getenv(\"HTTP_PROXY\")}'\"); con.execute(\"INSTALL 'sqlite';\" )" playwright install chromium echo "source .venv/bin/activate" >> ~/.bashrc

I'll check the README for any specific instructions regarding the environment.

shell
root@df946f6027ab:/workspace/scubaduck# cat README.md | head -n 20 I really like Scuba (Meta's internal real-time database system). The distributed , real-time database part of Scuba is quite difficult (and expensive) to replica te, but I also really like Scuba's UI for doing queries, and I have found myself wishing that I have access to it even for "small" databases, e.g., I have a sql ite dataset I want to explore. Pivotal ideas: * Time series by default. In the dedicated "time series" view, there are many fe atures specifically oriented towards working towards tables that represent event s that occurred over time: the start, end, compare, aggregate and granularity fi elds all specially privilege the timestamp field. In fact, you can't log events to Scuba's backing data store without a timestamp, they always come with one. (S cuba also supports other views that don't presuppose a time series, but the time series is the most beloved and well used view.) This is in contrast to typical software which tries to generalize to arbitrary data first, with time series bei ng added on later. * It's all about exploration. Scuba is predicated on the idea that you don't kno w what you're looking for, that you are going to spend time tweaking queries and changing filters/grouping as part of an investigation to figure out why a syste m behaves the way it is. So the filters/comparisons/groupings you want to edit a re always visible on the left sidebar, with the expectation that you're going to tweak the query to look at something else. Similarly, all the parameters of you r query get saved into your URL, so your browser history can double up as a quer y history / you can easily share a query with someone else. This is contrast to typical software which is often oriented to making pretty dashboards and reports . (This function is important too, but it's not what I want in exploration mode! ) * You can fix data problems in the query editor. It's pretty common to have mess ed up and ended up with a database that doesn't have exactly the columns you nee d, or some columns that are corrupted in some way. Scuba has pretty robust suppo rt for defining custom columns with arbitrary SQL functions, grouping over them as if they were native functions, and doing so with minimal runtime cost (Scuba aims to turn around your query in milliseconds!) Having to go and run a huge dat a pipeline to fix your data is a big impediment to exploration; quick and easy c ustom columns means you can patch over problems when you're investigating and fi x them for real later. We're going to build a exploratory data analysis tool like Scuba for time series database (i.e., a database with a mandatory timestamp representing the time an event occurred). We'll use DuckDB as the underlying SQL engine served from a Py thon server, and render the GUI/results as a webpage with vanilla HTML and JS. W e'll use choices.js to support token inputs. We define a token input to mean a text input element where as you type a dropdown displays with valid values, and if you select one or press enter, the selection turns into a token/chip that can only be deleted as one unit. To start, we are going to support one views: samples. The samples view only all ows you to view individual samples from the database, subject to a filter. Our m ain UI concept is that there is a left sidebar that is the query editor, and the right side that shows the view. The sidebar is always visible and defaults to the query parameters of the current view. After you make changes to the query, clicking the "Dive" button updates the view. The URL of the page encodes all of the values of the query (and gets updated when you Dive), so the browser's back button lets you view previous queries. The query editor's job is to generate a SQL query, which then is applied on the database, and then the result visualized according to the view. Here are the settings you can apply to the query. The help text should show up w hen you mouse over the field name: * Start/End - Help text: "Sets the start/end of the time range to query. Can be any kind of datetime string. For example: 'April 23, 2014' or 'yesterday'." The UI for this selector supports both relative selections (now, -1 hour, -3 hours, -12 hours, -1 day, -3 days, -1 week, -1 fortnight, -30 days, -90 days) as well a s specifying an absolute date. The way this field is rendered is there is a fre e form text box, a drop down arrow (for the relative selectors), and then a cale ndar button (for date selection). * Order By - Help text: "Choose a column to sort results by." There is an ASC/D ESC toggle next to it.

I’m going to check what tests are already in place.

shell
root@df946f6027ab:/workspace/scubaduck# ls tests conftest.py test_server_time.py test_web_graph.py test_multi_table_web.py test_server_timeseries.py test_web_table.py test_server.py test_web.py test_web_timeseries.py test_server_basic.py test_web_basics.py web_utils.py test_server_db_types.py test_web_chips.py test_server_errors.py test_web_columns.py

I'll check the tests and see how the style is set up.

shell
root@df946f6027ab:/workspace/scubaduck# sed -n '1,40p' tests/test_server.py """Legacy test module. Tests have been split into multiple files: - test_server_basic.py - test_server_db_types.py - test_server_time.py - test_server_errors.py - test_server_timeseries.py """

I’m taking a look at tests/test_server_time.py now.

shell
root@df946f6027ab:/workspace/scubaduck# sed -n '1,160p' tests/test_server_time.p y from __future__ import annotations import json from pathlib import Path import pytest from scubaduck import server def test_integer_time_column(tmp_path: Path) -> None: csv_file = tmp_path / "events.csv" csv_file.write_text("created,event\n1704067200,login\n1704070800,logout\n") app = server.create_app(csv_file) client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-01 01:00:00", "order_by": "created", "columns": ["created", "event"], "time_column": "created", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 2 def test_integer_time_unit_ms(tmp_path: Path) -> None: csv_file = tmp_path / "events.csv" csv_file.write_text("created,event\n1704067200000,login\n1704070800000,logou t\n") app = server.create_app(csv_file) client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-01 01:00:00", "order_by": "created", "columns": ["created", "event"], "time_column": "created", "time_unit": "ms", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 2 def test_timeseries_default_xaxis_uses_time_column(tmp_path: Path) -> None: csv_file = tmp_path / "events.csv" csv_file.write_text("created,event\n1704067200000,login\n1704070800000,logou t\n") app = server.create_app(csv_file) client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-01 01:00:00", "graph_type": "timeseries", "granularity": "1 hour", "columns": ["event"], "aggregate": "Count", "time_column": "created", "time_unit": "ms", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 2 def test_integer_time_unit_us_default_start_end(tmp_path: Path) -> None: csv_file = tmp_path / "events.csv" csv_file.write_text( "created,event\n1704067200000000,login\n1704070800000000,logout\n" ) app = server.create_app(csv_file) client = app.test_client() payload = { "table": "events", "order_by": "created", "columns": ["created", "event"], "time_column": "created", "time_unit": "us", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["start"] == "2024-01-01 00:00:00" assert data["end"] == "2024-01-01 01:00:00" assert len(data["rows"]) == 2 def test_sqlite_integer_time_unit_us(tmp_path: Path) -> None: sqlite_file = tmp_path / "events.sqlite" import sqlite3 conn = sqlite3.connect(sqlite_file) conn.execute("CREATE TABLE visits (visit_time INTEGER, event TEXT)") big_ts = 13384551652000000 conn.execute("INSERT INTO visits VALUES (?, ?)", (big_ts, "foo")) conn.commit() conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce ssIssue] app = server.create_app(sqlite_file) client = app.test_client() payload = { "table": "visits", "start": "2394-02-20 00:00:00", "end": "2394-02-21 00:00:00", "order_by": "visit_time", "columns": ["visit_time", "event"], "time_column": "visit_time", "time_unit": "us", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 1 def test_relative_time_query(monkeypatch: pytest.MonkeyPatch) -> None: app = server.app client = app.test_client() from datetime import datetime fixed_now = datetime(2024, 1, 2, 4, 0, 0) class FixedDateTime(datetime): @classmethod def now(cls, tz=None): # type: ignore[override] return fixed_now if tz is None else fixed_now.astimezone(tz) monkeypatch.setattr(server, "datetime", FixedDateTime) payload = { "table": "events", "start": "-1 hour", "end": "now", "order_by": "timestamp", "limit": 100, "columns": ["timestamp", "event", "value", "user"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json()
root@df946f6027ab:/workspace/scubaduck# sed -n '160,320p' tests/test_server_time .py data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 1 assert data["rows"][0][3] == "charlie" def test_default_start_end_returned() -> None: app = server.app client = app.test_client() payload = { "table": "events", "order_by": "timestamp", "limit": 5, "columns": ["timestamp"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["start"] == "2024-01-01 00:00:00" assert data["end"] == "2024-01-02 03:00:00" def test_time_column_none_no_time_filter() -> None: app = server.app client = app.test_client() payload = { "table": "events", "columns": ["timestamp", "event"], "time_column": "", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert "start" not in data and "end" not in data assert len(data["rows"]) == 4

I'll take a look at tests/test_server_timeseries.py to see what's inside.

shell
root@df946f6027ab:/workspace/scubaduck# sed -n '1,160p' tests/test_server_timese ries.py from __future__ import annotations import json from typing import Any, cast from scubaduck import server def test_group_by_table() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "order_by": "user", "limit": 10, "columns": ["value"], "group_by": ["user"], "aggregate": "Sum", "show_hits": True, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) rows = rv.get_json()["rows"] assert rows[0][0] == "alice" assert rows[0][1] == 2 assert rows[0][2] == 40 def test_table_avg_with_timestamp() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "order_by": "user", "limit": 100, "columns": ["user", "timestamp", "value"], "group_by": ["user"], "aggregate": "Avg", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert "error" not in data rows = data["rows"] assert rows[0][0] == "alice" from dateutil import parser ts = parser.parse(rows[0][1]).replace(tzinfo=None) assert ts == parser.parse("2024-01-01 12:00:00") def test_timeseries_basic() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "limit": 100, "group_by": ["user"], "aggregate": "Count", "columns": ["value"], "x_axis": "timestamp", "granularity": "1 day", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 4 def test_timeseries_orders_by_xaxis() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "limit": 100, "columns": ["value"], "x_axis": "timestamp", "granularity": "1 day", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 rows = data["rows"] from dateutil import parser timestamps = [parser.parse(r[0]).replace(tzinfo=None) for r in rows] assert timestamps == sorted(timestamps) def test_timeseries_count_no_columns() -> None: app = server.app client = app.test_client() payload: dict[str, Any] = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "granularity": "1 day", "columns": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 rows = data["rows"] assert len(rows) == 2 assert rows[0][1] == 2 assert rows[1][1] == 2 def test_timeseries_limit_applies_to_series() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "limit": 1, "order_by": "user", "group_by": ["user"], "aggregate": "Count", "columns": ["value"], "x_axis": "timestamp", "granularity": "1 day", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 2 assert all(r[1] == "alice" for r in data["rows"]) def test_timeseries_auto_and_fine_buckets() -> None: app = server.app client = app.test_client() def run(gran: str) -> None:
root@df946f6027ab:/workspace/scubaduck# sed -n '160,320p' tests/test_server_time series.py def run(gran: str) -> None: payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-02 03:00:00", "graph_type": "timeseries", "columns": ["value"], "x_axis": "timestamp", "granularity": gran, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/js on" ) data = rv.get_json() assert rv.status_code == 200 from dateutil import parser start = parser.parse(cast(str, payload["start"])).replace(tzinfo=None) buckets = [ parser.parse(cast(str, r[0])).replace(tzinfo=None) for r in data["ro ws"] ] assert buckets[0] == start if len(buckets) > 1: step = (buckets[1] - buckets[0]).total_seconds() assert step % data["bucket_size"] == 0 assert any(r[1] != 0 for r in data["rows"]) run("Auto") run("Fine") def test_timeseries_string_column_error() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "limit": 7, "columns": ["timestamp", "event", "value", "user"], "x_axis": "timestamp", "granularity": "1 hour", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) assert rv.status_code == 200 def test_derived_column_basic() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "limit": 10, "columns": ["timestamp"], "derived_columns": {"val2": "value * 2"}, "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["rows"][0][1] == 20 def test_timeseries_derived_column() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "granularity": "1 hour", "limit": 7, "columns": ["value"], "derived_columns": {"derived_1": "value * 2"}, "aggregate": "Avg", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 rows = data["rows"] assert all(r[2] == r[1] * 2 for r in rows) def test_reserved_word_column() -> None: app = server.create_app("TEST") client = app.test_client() payload = { "table": "extra", "columns": ["ts", "desc"], "order_by": "ts", "time_column": "", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 2 assert data["rows"][0][1] == "x"

I'll add tests to test_server_time.py or a new file to handle these bugs.

shell
root@df946f6027ab:/workspace/scubaduck# ls scubaduck __init__.py sample.csv server.py static

root@df946f6027ab:/workspace/scubaduck# sed -n '1,160p' scubaduck/server.py from __future__ import annotations from dataclasses import dataclass, field, replace from typing import Any, Dict, List, Tuple, cast import re from datetime import datetime, timedelta, timezone import time from pathlib import Path import os import traceback import math import duckdb from dateutil import parser as dtparser from flask import Flask, jsonify, request, send_from_directory def _quote(ident: str) -> str: """Return identifier quoted for SQL.""" return f'"{ident.replace('"', '""')}"' @dataclass class Filter: column: str op: str value: str | int | float | list[str] | None @dataclass class QueryParams: start: str | None = None end: str | None = None order_by: str | None = None order_dir: str = "ASC" limit: int | None = None columns: list[str] = field(default_factory=lambda: []) filters: list[Filter] = field(default_factory=lambda: []) derived_columns: dict[str, str] = field(default_factory=lambda: {}) graph_type: str = "samples" group_by: list[str] = field(default_factory=lambda: []) aggregate: str | None = None show_hits: bool = False x_axis: str | None = None granularity: str = "Auto" fill: str = "0" table: str = "events" time_column: str | None = "timestamp" time_unit: str = "s" def _load_database(path: Path) -> duckdb.DuckDBPyConnection: if not path.exists(): raise FileNotFoundError(path) ext = path.suffix.lower() if ext == ".csv": con = duckdb.connect() con.execute( f"CREATE TABLE events AS SELECT * FROM read_csv_auto('{path.as_posix ()}')" ) elif ext in {".db", ".sqlite"}: con = duckdb.connect() con.execute("LOAD sqlite") con.execute(f"ATTACH '{path.as_posix()}' AS db (TYPE SQLITE)") tables = [ r[0] for r in con.execute( "SELECT name FROM sqlite_master WHERE type='table'" ).fetchall() ] for t in tables: con.execute(f'CREATE VIEW "{t}" AS SELECT * FROM db."{t}"') else: con = duckdb.connect(path) return con def _create_test_database() -> duckdb.DuckDBPyConnection: """Return a DuckDB connection with a small multi-table dataset.""" con = duckdb.connect() con.execute( "CREATE TABLE events (id INTEGER PRIMARY KEY, ts INTEGER, val REAL, name TEXT, flag BOOLEAN)" ) con.execute("INSERT INTO events VALUES (1, 1704067200, 1.5, 'alice', 1)") con.execute("INSERT INTO events VALUES (2, 1704070800, 2.0, 'bob', 0)") con.execute('CREATE TABLE extra (ts INTEGER, "desc" TEXT, num INTEGER)') con.execute("INSERT INTO extra VALUES (1704067200, 'x', 1)") con.execute("INSERT INTO extra VALUES (1704070800, 'y', 2)") return con _REL_RE = re.compile( r"([+-]?\d+(?:\.\d*)?)\s*(hour|hours|day|days|week|weeks|fortnight|fortnight s)", re.IGNORECASE, ) def parse_time(val: str | None) -> str | None: """Parse an absolute or relative time string into ``YYYY-MM-DD HH:MM:SS``."" " if val is None or val == "": return None s = val.strip() if s.lower() == "now": dt = datetime.now(timezone.utc) return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S") m = _REL_RE.fullmatch(s) if m: qty = float(m.group(1)) unit = m.group(2).lower() delta: timedelta if unit.startswith("hour"): delta = timedelta(hours=qty) elif unit.startswith("day"): delta = timedelta(days=qty) elif unit.startswith("week"): ... graph_type: str = "samples" group_by: list[str] = field(default_factory=lambda: []) aggregate: str | None = None show_hits: bool = False x_axis: str | None = None granularity: str = "Auto" fill: str = "0" table: str = "events" time_column: str | None = "timestamp" time_unit: str = "s" def _load_database(path: Path) -> duckdb.DuckDBPyConnection: if not path.exists(): raise FileNotFoundError(path) ext = path.suffix.lower() if ext == ".csv": con = duckdb.connect() con.execute( f"CREATE TABLE events AS SELECT * FROM read_csv_auto('{path.as_posix ()}')" ) elif ext in {".db", ".sqlite"}: con = duckdb.connect() con.execute("LOAD sqlite") con.execute(f"ATTACH '{path.as_posix()}' AS db (TYPE SQLITE)") tables = [ r[0] for r in con.execute( "SELECT name FROM sqlite_master WHERE type='table'" ).fetchall() ] for t in tables: con.execute(f'CREATE VIEW "{t}" AS SELECT * FROM db."{t}"') else: con = duckdb.connect(path) return con def _create_test_database() -> duckdb.DuckDBPyConnection: """Return a DuckDB connection with a small multi-table dataset.""" con = duckdb.connect() con.execute( "CREATE TABLE events (id INTEGER PRIMARY KEY, ts INTEGER, val REAL, name TEXT, flag BOOLEAN)" ) con.execute("INSERT INTO events VALUES (1, 1704067200, 1.5, 'alice', 1)") con.execute("INSERT INTO events VALUES (2, 1704070800, 2.0, 'bob', 0)") con.execute('CREATE TABLE extra (ts INTEGER, "desc" TEXT, num INTEGER)') con.execute("INSERT INTO extra VALUES (1704067200, 'x', 1)") con.execute("INSERT INTO extra VALUES (1704070800, 'y', 2)") return con _REL_RE = re.compile( r"([+-]?\d+(?:\.\d*)?)\s*(hour|hours|day|days|week|weeks|fortnight|fortnight s)", re.IGNORECASE, ) def parse_time(val: str | None) -> str | None: """Parse an absolute or relative time string into ``YYYY-MM-DD HH:MM:SS``."" " if val is None or val == "": return None s = val.strip() if s.lower() == "now": dt = datetime.now(timezone.utc) return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S") m = _REL_RE.fullmatch(s) if m: qty = float(m.group(1)) unit = m.group(2).lower() delta: timedelta if unit.startswith("hour"): delta = timedelta(hours=qty) elif unit.startswith("day"): delta = timedelta(days=qty) elif unit.startswith("week"): delta = timedelta(weeks=qty) elif unit.startswith("fortnight"): delta = timedelta(weeks=2 * qty) else: # pragma: no cover - defensive raise ValueError(f"Unsupported unit: {unit}") dt = datetime.now(timezone.utc) + delta return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S") dt = dtparser.parse(s) return dt.replace(microsecond=0, tzinfo=None).strftime("%Y-%m-%d %H:%M:%S") def _granularity_seconds(granularity: str, start: str | None, end: str | None) - > int: gran = granularity.lower() mapping = { "1 second": 1, "5 seconds": 5, "10 seconds": 10, "30 seconds": 30, "1 minute": 60, "4 minutes": 240, "5 minutes": 300, "10 minutes": 600, "15 minutes": 900, "30 minutes": 1800, "1 hour": 3600, "3 hours": 10800, "6 hours": 21600, "1 day": 86400, "1 week": 604800, "30 days": 2592000, } if gran in mapping: return mapping[gran] if gran in {"auto", "fine"} and start and end: try: s = dtparser.parse(start) e = dtparser.parse(end) except Exception: return 3600 total = max((e - s).total_seconds(), 1)

Keep going to capture more details.

shell
root@df946f6027ab:/workspace/scubaduck# sed -n '160,320p' scubaduck/server.py total = max((e - s).total_seconds(), 1) buckets = 100 if gran == "auto" else 500 return max(int(total // buckets), 1) return 3600 def _time_expr(col: str, column_types: Dict[str, str] | None, unit: str) -> str: """Return SQL expression for column interpreted as timestamp.""" qcol = _quote(col) if column_types is None: return qcol ctype = column_types.get(col, "").upper() if not any(t in ctype for t in ["TIMESTAMP", "DATE", "TIME"]): if any( t in ctype for t in [ "INT", "DECIMAL", "REAL", "DOUBLE", "FLOAT", "NUMERIC", "HUGEINT", ] ): if unit == "ns": expr = f"CAST({qcol} AS BIGINT)" return f"make_timestamp_ns({expr})" multiplier = { "s": 1_000_000, "ms": 1_000, "us": 1, }.get(unit, 1_000_000) expr = ( f"CAST({qcol} * {multiplier} AS BIGINT)" if multiplier != 1 else f"CAST({qcol} AS BIGINT)" ) return f"make_timestamp({expr})" return qcol def build_query(params: QueryParams, column_types: Dict[str, str] | None = None) -> str: select_parts: list[str] = [] group_cols = params.group_by[:] selected_for_order = set(params.columns) | set(params.derived_columns.keys() ) if params.graph_type == "timeseries": sec = _granularity_seconds(params.granularity, params.start, params.end) x_axis = params.x_axis or params.time_column if x_axis is None: raise ValueError("x_axis required for timeseries") xexpr = _time_expr(x_axis, column_types, params.time_unit) if params.start: bucket_expr = ( f"TIMESTAMP '{params.start}' + INTERVAL '{sec} second' * " f"CAST(floor((epoch({xexpr}) - epoch(TIMESTAMP '{params.start}') )/{sec}) AS BIGINT)" ) else: bucket_expr = ( f"TIMESTAMP 'epoch' + INTERVAL '{sec} second' * " f"CAST(floor(epoch({xexpr})/{sec}) AS BIGINT)" ) select_parts.append(f"{bucket_expr} AS bucket") group_cols = ["bucket"] + group_cols selected_for_order.add("bucket") has_agg = bool(group_cols) or params.aggregate is not None if has_agg: select_cols = ( group_cols[1:] if params.graph_type == "timeseries" else group_cols ) select_parts.extend(_quote(c) for c in select_cols) agg = (params.aggregate or "count").lower() selected_for_order.update(group_cols) def agg_expr(col: str) -> str: expr = _quote(col) ctype = column_types.get(col, "").upper() if column_types else "" if "BOOL" in ctype: expr = f"CAST({_quote(col)} AS BIGINT)" if agg.startswith("p"): quant = float(agg[1:]) / 100 return f"quantile({expr}, {quant})" if agg == "count distinct": return f"count(DISTINCT {expr})" if agg == "avg" and column_types is not None: if "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype: return ( "TIMESTAMP 'epoch' + INTERVAL '1 second' * " f"CAST(avg(epoch({_quote(col)})) AS BIGINT)" ) return f"{agg}({expr})" if agg == "count": select_parts.append("count(*) AS Count") selected_for_order.add("Count") else: for col in params.columns: if col in group_cols: continue select_parts.append(f"{agg_expr(col)} AS {_quote(col)}") selected_for_order.add(col) if params.show_hits: select_parts.insert(len(group_cols), "count(*) AS Hits") selected_for_order.add("Hits") else: select_parts.extend(_quote(c) for c in params.columns) selected_for_order.update(params.columns) order_by = params.order_by if params.order_by in selected_for_order else Non e if has_agg and params.derived_columns: inner_params = replace( params, derived_columns={}, order_by=None, limit=None, ) inner_sql = build_query(inner_params, column_types) outer_select = ["t.*"] + [ f"{expr} AS {name}" for name, expr in params.derived_columns.items() ] indented_inner = "\n".join(" " + line for line in inner_sql.splitline s()) lines = [ f"SELECT {', '.join(outer_select)}", "FROM (", indented_inner, ") t", ] if order_by: lines.append(f"ORDER BY {_quote(order_by)} {params.order_dir}") elif params.graph_type == "timeseries": lines.append("ORDER BY bucket") if params.limit is not None: lines.append(f"LIMIT {params.limit}") return "\n".join(lines) for name, expr in params.derived_columns.items(): select_parts.append(f"{expr} AS {name}") selected_for_order.add(name) select_clause = ", ".join(select_parts) if select_parts else "*" lines = [f"SELECT {select_clause}", f'FROM "{params.table}"'] where_parts: list[str] = [] if params.time_column: time_expr = _time_expr(params.time_column, column_types, params.time_uni t) else: time_expr = None if time_expr and params.start: where_parts.append(f"{time_expr} >= '{params.start}'") if time_expr and params.end: where_parts.append(f"{time_expr} <= '{params.end}'") for f in params.filters: op = f.op if op in {"empty", "!empty"}: val = "''" else: if f.value is None: continue if isinstance(f.value, list): if not f.value: continue
continue if op == "=": qcol = _quote(f.column) vals = " OR ".join(f"{qcol} = '{v}'" for v in f.value) where_parts.append(f"({vals})") continue val = f"'{f.value}'" if isinstance(f.value, str) else str(f.value) qcol = _quote(f.column) if op == "contains": where_parts.append(f"{qcol} ILIKE '%' || {val} || '%'") elif op == "!contains": where_parts.append(f"{qcol} NOT ILIKE '%' || {val} || '%'") elif op == "empty": where_parts.append(f"{qcol} = {val}") elif op == "!empty": where_parts.append(f"{qcol} != {val}") else: where_parts.append(f"{qcol} {op} {val}") if where_parts: lines.append("WHERE " + " AND ".join(where_parts)) if group_cols: lines.append("GROUP BY " + ", ".join(_quote(c) for c in group_cols)) if order_by: lines.append(f"ORDER BY {_quote(order_by)} {params.order_dir}") elif params.graph_type == "timeseries": lines.append("ORDER BY bucket") if params.limit is not None: lines.append(f"LIMIT {params.limit}") return "\n".join(lines) def create_app(db_file: str | Path | None = None) -> Flask: app = Flask(__name__, static_folder="static") if db_file is None: env_db = os.environ.get("SCUBADUCK_DB") if env_db: db_file = env_db if isinstance(db_file, str) and db_file.upper() == "TEST": con = _create_test_database() else: db_path = Path(db_file or Path(__file__).with_name("sample.csv")).resolv e() con = _load_database(db_path) tables = [r[0] for r in con.execute("SHOW TABLES").fetchall()] if not tables: raise ValueError("No tables found in database") default_table = tables[0] columns_cache: Dict[str, Dict[str, str]] = {} def get_columns(table: str) -> Dict[str, str]: if table not in columns_cache: rows = con.execute(f'PRAGMA table_info("{table}")').fetchall() if not rows: raise ValueError(f"Unknown table: {table}") columns_cache[table] = {r[1]: r[2] for r in rows} return columns_cache[table] sample_cache: Dict[Tuple[str, str, str], Tuple[List[str], float]] = {} CACHE_TTL = 60.0 CACHE_LIMIT = 200 @app.route("/") def index() -> Any: # pyright: ignore[reportUnusedFunction] assert app.static_folder is not None return send_from_directory(app.static_folder, "index.html") @app.route("/js/<path:filename>") def js(filename: str) -> Any: # pyright: ignore[reportUnusedFunction] assert app.static_folder is not None folder = Path(app.static_folder) / "js" return send_from_directory(folder, filename) @app.route("/api/tables") def tables_endpoint() -> Any: # pyright: ignore[reportUnusedFunction] return jsonify(tables) @app.route("/api/columns") def columns() -> Any: # pyright: ignore[reportUnusedFunction] table = request.args.get("table", default_table) rows = con.execute(f'PRAGMA table_info("{table}")').fetchall() return jsonify([{"name": r[1], "type": r[2]} for r in rows]) def _cache_get(key: Tuple[str, str, str]) -> List[str] | None: item = sample_cache.get(key) if item is None: return None vals, ts = item if time.time() - ts > CACHE_TTL: del sample_cache[key] return None sample_cache[key] = (vals, time.time()) return vals def _cache_set(key: Tuple[str, str, str], vals: List[str]) -> None: sample_cache[key] = (vals, time.time()) if len(sample_cache) > CACHE_LIMIT: oldest = min(sample_cache.items(), key=lambda kv: kv[1][1])[0] del sample_cache[oldest] @app.route("/api/samples") def sample_values() -> Any: # pyright: ignore[reportUnusedFunction] table = request.args.get("table", default_table) column = request.args.get("column") substr = request.args.get("q", "") column_types = get_columns(table) if not column or column not in column_types: return jsonify([]) ctype = column_types[column].upper() if "CHAR" not in ctype and "STRING" not in ctype and "VARCHAR" not in ct ype: return jsonify([]) key = (table, column, substr) cached = _cache_get(key) if cached is not None: return jsonify(cached) qcol = _quote(column) rows = con.execute( f"SELECT DISTINCT {qcol} FROM \"{table}\" WHERE CAST({qcol} AS VARCH AR) ILIKE '%' || ? || '%' LIMIT 20", [substr], ).fetchall() values = [r[0] for r in rows] _cache_set(key, values) ... return jsonify({"error": f"Unknown column: {col}"}), 400 if params.order_by and params.order_by not in valid_cols: return jsonify({"error": f"Unknown column: {params.order_by}"}), 400 if params.group_by or params.graph_type == "timeseries": agg = (params.aggregate or "count").lower() if agg.startswith("p") or agg == "sum": need_numeric = True allow_time = False elif agg == "avg" or agg in {"min", "max"}: need_numeric = False allow_time = True else: need_numeric = False allow_time = False if need_numeric or allow_time: for c in params.columns: if c in params.group_by or c == params.x_axis: continue if c not in column_types: continue ctype = column_types.get(c, "").upper() is_numeric = any( t in ctype for t in [ "INT", "DECIMAL", "REAL", "DOUBLE", "FLOAT", "NUMERIC", "HUGEINT", ] ) is_time = "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype if need_numeric and not is_numeric: return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) if allow_time and not (is_numeric or is_time): return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) if (params.start is None or params.end is None) and ( params.x_axis or params.time_column ): axis = params.x_axis or params.time_column assert axis is not None row = cast( tuple[datetime | None, datetime | None], con.execute( f'SELECT min({_quote(axis)}), max({_quote(axis)}) FROM "{par ams.table}"' ).fetchall()[0], ) mn, mx = row divisor = { "s": 1, "ms": 1000, "us": 1_000_000, "ns": 1_000_000_000, }.get(params.time_unit, 1) if isinstance(mn, (int, float)): try: mn = datetime.fromtimestamp(int(mn) / divisor, tz=timezone.u tc) except Exception: return ( jsonify( { "error": ( f"Invalid time value {mn} for column {axis}" f" with time_unit {params.time_unit}" ) } ), 400, ) if isinstance(mx, (int, float)): try: mx = datetime.fromtimestamp(int(mx) / divisor, tz=timezone.u tc) except Exception: return ( jsonify( { "error": ( f"Invalid time value {mx} for column {axis}" f" with time_unit {params.time_unit}" ) } ), 400, ) if params.start is None and mn is not None: params.start = ( mn.strftime("%Y-%m-%d %H:%M:%S") if not isinstance(mn, str) else mn ) if params.end is None and mx is not None: params.end = ( mx.strftime("%Y-%m-%d %H:%M:%S") if not isinstance(mx, str) else mx ) bucket_size: int | None = None if params.graph_type == "timeseries": bucket_size = _granularity_seconds( params.granularity, params.start if isinstance(params.start, str) else None, params.end if isinstance(params.end, str) else None,
root@df946f6027ab:/workspace/scubaduck# sed -n '640,960p' scubaduck/server.py params.end if isinstance(params.end, str) else None, ) if ( params.limit is not None and params.start is not None and params.end is not None ): try: start_dt = dtparser.parse(params.start) end_dt = dtparser.parse(params.end) buckets = math.ceil( (end_dt - start_dt).total_seconds() / bucket_size ) if buckets > 1: params.limit *= buckets except Exception: pass sql = build_query(params, column_types) try: rows = con.execute(sql).fetchall() except Exception as exc: tb = traceback.format_exc() print(f"Query failed:\n{sql}\n{tb}") return ( jsonify({"sql": sql, "error": str(exc), "traceback": tb}), 400, ) result: Dict[str, Any] = {"sql": sql, "rows": rows} if params.start is not None: result["start"] = str(params.start) if params.end is not None: result["end"] = str(params.end) if bucket_size is not None: result["bucket_size"] = bucket_size return jsonify(result) return app app = create_app() if __name__ == "__main__": app.run(debug=True)

I’ll open up sample.csv to understand the structure and investigate the time-related issues.

shell
root@df946f6027ab:/workspace/scubaduck# cat scubaduck/sample.csv | head -n 5 timestamp,event,value,user 2024-01-01 00:00:00,login,10,alice 2024-01-01 01:00:00,logout,20,bob 2024-01-02 00:00:00,login,30,alice 2024-01-02 03:00:00,login,40,charlie

The dataset might be larger, but I'll examine the first few lines in init.py.

shell
root@df946f6027ab:/workspace/scubaduck# sed -n '1,40p' scubaduck/__init__.py def hello() -> str: return "Hello from scubaduck!"

To avoid overflow, I'll cast to BIGINT before multiplication. Then I'll adjust the bug reproduction logic for handling string-type time columns.

I’ll check if "TEST dataset" is linked to server.app and _create_test_database.

shell
root@df946f6027ab:/workspace/scubaduck# grep -n "_create_test_database" -n scuba duck/server.py 81:def _create_test_database() -> duckdb.DuckDBPyConnection: 359: con = _create_test_database()
) elif ext in {".db", ".sqlite"}: con = duckdb.connect() con.execute("LOAD sqlite") con.execute(f"ATTACH '{path.as_posix()}' AS db (TYPE SQLITE)") tables = [ r[0] for r in con.execute( "SELECT name FROM sqlite_master WHERE type='table'" ).fetchall() ] for t in tables: con.execute(f'CREATE VIEW "{t}" AS SELECT * FROM db."{t}"') else: con = duckdb.connect(path) return con def _create_test_database() -> duckdb.DuckDBPyConnection: """Return a DuckDB connection with a small multi-table dataset.""" con = duckdb.connect() con.execute( "CREATE TABLE events (id INTEGER PRIMARY KEY, ts INTEGER, val REAL, name TEXT, flag BOOLEAN)" ) con.execute("INSERT INTO events VALUES (1, 1704067200, 1.5, 'alice', 1)") con.execute("INSERT INTO events VALUES (2, 1704070800, 2.0, 'bob', 0)") con.execute('CREATE TABLE extra (ts INTEGER, "desc" TEXT, num INTEGER)') con.execute("INSERT INTO extra VALUES (1704067200, 'x', 1)") con.execute("INSERT INTO extra VALUES (1704070800, 'y', 2)") return con _REL_RE = re.compile( r"([+-]?\d+(?:\.\d*)?)\s*(hour|hours|day|days|week|weeks|fortnight|fortnight s)", re.IGNORECASE, ) def parse_time(val: str | None) -> str | None: """Parse an absolute or relative time string into ``YYYY-MM-DD HH:MM:SS``."" " if val is None or val == "": return None s = val.strip() if s.lower() == "now": dt = datetime.now(timezone.utc) return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S") m = _REL_RE.fullmatch(s) if m: qty = float(m.group(1)) unit = m.group(2).lower() delta: timedelta if unit.startswith("hour"): delta = timedelta(hours=qty) elif unit.startswith("day"): delta = timedelta(days=qty) elif unit.startswith("week"): delta = timedelta(weeks=qty) elif unit.startswith("fortnight"): delta = timedelta(weeks=2 * qty) else: # pragma: no cover - defensive raise ValueError(f"Unsupported unit: {unit}") dt = datetime.now(timezone.utc) + delta return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S") dt = dtparser.parse(s) return dt.replace(microsecond=0, tzinfo=None).strftime("%Y-%m-%d %H:%M:%S") def _granularity_seconds(granularity: str, start: str | None, end: str | None) - > int: gran = granularity.lower() mapping = { "1 second": 1, "5 seconds": 5, "10 seconds": 10, "30 seconds": 30, "1 minute": 60, "4 minutes": 240,

I'll check tests/test_server_basic for an example, particularly how the TEST dataset is used.

shell
def test_basic_query() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-02 00:00:00", "order_by": "timestamp", "order_dir": "ASC", "limit": 10, "columns": ["timestamp", "event", "value", "user"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert data rows = data["rows"] # We expect first three rows (until 2024-01-02 00:00:00) assert len(rows) == 3 assert rows[0][1] == "login" assert rows[1][1] == "logout" def test_js_served() -> None: app = server.app client = app.test_client() rv = client.get("/js/chip_input.js") assert rv.status_code == 200 assert b"initChipInput" in rv.data def test_filter_multi_token() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-02 03:00:00", "order_by": "timestamp", "limit": 10, "columns": ["timestamp", "event", "value", "user"], "filters": [{"column": "user", "op": "=", "value": ["alice", "charlie"]} ], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert data rows = data["rows"] # Should only return rows for alice and charlie assert len(rows) == 3 assert rows[0][3] == "alice" assert rows[-1][3] == "charlie" def test_empty_filter_is_noop() -> None: app = server.app client = app.test_client() base_payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "limit": 100, "columns": ["timestamp", "event", "value", "user"], } no_filter = {**base_payload, "filters": []} empty_filter = { **base_payload, "filters": [{"column": "user", "op": "=", "value": None}], } rv1 = client.post( "/api/query", data=json.dumps(no_filter), content_type="application/json " ) rv2 = client.post( "/api/query", data=json.dumps(empty_filter), content_type="application/j son" ) rows1 = rv1.get_json()["rows"] rows2 = rv2.get_json()["rows"] assert rows1 == rows2 def test_select_columns() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "order_by": "timestamp", "limit": 10, "columns": ["timestamp", "user"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert data rows = data["rows"] assert len(rows[0]) == 2 assert rows[0][1] == "alice" def test_string_filter_ops() -> None: app = server.app client = app.test_client() base = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "order_by": "timestamp", "limit": 100, "columns": ["timestamp", "event", "value", "user"], } contains = { **base, "filters": [{"column": "user", "op": "contains", "value": "ali"}], } rv = client.post( "/api/query", data=json.dumps(contains), content_type="application/json" ) rows = rv.get_json()["rows"] assert all("ali" in r[3] for r in rows) regex = { **base, "filters": [{"column": "user", "op": "~", "value": "^a.*"}], } rv = client.post( "/api/query", data=json.dumps(regex), content_type="application/json" ) rows = rv.get_json()["rows"] assert all(r[3].startswith("a") for r in rows) assert len(rows) == 2 not_empty = {**base, "filters": [{"column": "user", "op": "!empty"}]} rv = client.post( "/api/query", data=json.dumps(not_empty), content_type="application/json " ) assert len(rv.get_json()["rows"]) == 4 def test_order_by_ignored_when_not_selected() -> None: app = server.app client = app.test_client() payload = { "table": "events", "order_by": "value", "columns": ["timestamp"], }
root@df946f6027ab:/workspace/scubaduck# sed -n '160,320p' tests/test_server_basi c.py } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert "ORDER BY" not in data["sql"]

I see tests for time column, but not for this particular bug. I'll check other files.

shell
import json from scubaduck import server def test_invalid_time_error() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "nonsense", "end": "now", "order_by": "timestamp", "limit": 10, "columns": ["timestamp"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "error" in data def test_query_error_returns_sql_and_traceback() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "columns": ["event"], "group_by": ["user"], "aggregate": "avg", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "error" in data def test_table_unknown_column_error() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "order_by": "timestamp", "limit": 100, "columns": ["user", "Hits", "value"], "group_by": ["user"], "aggregate": "Count", "show_hits": True, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "Unknown column" in data["error"] def test_samples_view_rejects_group_by() -> None: app = server.app client = app.test_client() payload = { "table": "events", "graph_type": "samples", "group_by": ["user"], "columns": ["timestamp"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "only valid" in data["error"]

I think the issue happens when our server doesn't parse time correctly for integers. I'll check the parse_time function and also review build_query for _time_expr. There may also be something with the default calculation for Start/End when time unit is 'us'. I'll dive into the test and server.py to confirm.

shell
root@df946f6027ab:/workspace/scubaduck# grep -n "start is None" -n scubaduck/ser ver.py 578: if (params.start is None or params.end is None) and ( 626: if params.start is None and mn is not None:
if need_numeric and not is_numeric: return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) if allow_time and not (is_numeric or is_time): return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) if (params.start is None or params.end is None) and ( params.x_axis or params.time_column ): axis = params.x_axis or params.time_column assert axis is not None row = cast( tuple[datetime | None, datetime | None], con.execute( f'SELECT min({_quote(axis)}), max({_quote(axis)}) FROM "{par ams.table}"' ).fetchall()[0], ) mn, mx = row divisor = { "s": 1, "ms": 1000, "us": 1_000_000, "ns": 1_000_000_000, }.get(params.time_unit, 1) if isinstance(mn, (int, float)): try: mn = datetime.fromtimestamp(int(mn) / divisor, tz=timezone.u tc) except Exception: return ( jsonify( { "error": ( f"Invalid time value {mn} for column {axis}" f" with time_unit {params.time_unit}" ) } ), 400, ) if isinstance(mx, (int, float)): try: mx = datetime.fromtimestamp(int(mx) / divisor, tz=timezone.u tc) except Exception: return ( jsonify( { "error": ( f"Invalid time value {mx} for column {axis}" f" with time_unit {params.time_unit}" ) } ), 400, ) if params.start is None and mn is not None: params.start = ( mn.strftime("%Y-%m-%d %H:%M:%S") if not isinstance(mn, str) else mn ) if params.end is None and mx is not None: params.end = ( mx.strftime("%Y-%m-%d %H:%M:%S") if not isinstance(mx, str) else mx ) bucket_size: int | None = None if params.graph_type == "timeseries": bucket_size = _granularity_seconds( params.granularity, params.start if isinstance(params.start, str) else None, params.end if isinstance(params.end, str) else None,
import json from pathlib import Path import pytest from scubaduck import server def test_integer_time_column(tmp_path: Path) -> None: csv_file = tmp_path / "events.csv" csv_file.write_text("created,event\n1704067200,login\n1704070800,logout\n") app = server.create_app(csv_file) client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-01 01:00:00", "order_by": "created", "columns": ["created", "event"], "time_column": "created", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 2 def test_integer_time_unit_ms(tmp_path: Path) -> None: csv_file = tmp_path / "events.csv" csv_file.write_text("created,event\n1704067200000,login\n1704070800000,logou t\n") app = server.create_app(csv_file) client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-01 01:00:00", "order_by": "created", "columns": ["created", "event"], "time_column": "created", "time_unit": "ms", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json()
def test_timeseries_default_xaxis_uses_time_column(tmp_path: Path) -> None: csv_file = tmp_path / "events.csv" csv_file.write_text("created,event\n1704067200000,login\n1704070800000,logou t\n") app = server.create_app(csv_file) client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-01 01:00:00", "graph_type": "timeseries", "granularity": "1 hour", "columns": ["event"], "aggregate": "Count", "time_column": "created", "time_unit": "ms", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 2 def test_integer_time_unit_us_default_start_end(tmp_path: Path) -> None: csv_file = tmp_path / "events.csv" csv_file.write_text( "created,event\n1704067200000000,login\n1704070800000000,logout\n" ) app = server.create_app(csv_file) client = app.test_client() payload = { "table": "events", "order_by": "created", "columns": ["created", "event"], "time_column": "created", "time_unit": "us", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["start"] == "2024-01-01 00:00:00" assert data["end"] == "2024-01-01 01:00:00" assert len(data["rows"]) == 2 def test_sqlite_integer_time_unit_us(tmp_path: Path) -> None: sqlite_file = tmp_path / "events.sqlite" import sqlite3 conn = sqlite3.connect(sqlite_file) conn.execute("CREATE TABLE visits (visit_time INTEGER, event TEXT)") big_ts = 13384551652000000 conn.execute("INSERT INTO visits VALUES (?, ?)", (big_ts, "foo")) conn.commit() conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce ssIssue] app = server.create_app(sqlite_file) client = app.test_client() payload = { "table": "visits", "start": "2394-02-20 00:00:00", "end": "2394-02-21 00:00:00", "order_by": "visit_time", "columns": ["visit_time", "event"], "time_column": "visit_time", "time_unit": "us", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 1 def test_relative_time_query(monkeypatch: pytest.MonkeyPatch) -> None: app = server.app client = app.test_client() from datetime import datetime fixed_now = datetime(2024, 1, 2, 4, 0, 0) class FixedDateTime(datetime): @classmethod def now(cls, tz=None): # type: ignore[override] return fixed_now if tz is None else fixed_now.astimezone(tz) monkeypatch.setattr(server, "datetime", FixedDateTime) payload = { "table": "events", "start": "-1 hour", "end": "now", "order_by": "timestamp", "limit": 100, "columns": ["timestamp", "event", "value", "user"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json()
.py data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 1 assert data["rows"][0][3] == "charlie" def test_default_start_end_returned() -> None: app = server.app client = app.test_client() payload = { "table": "events", "order_by": "timestamp", "limit": 5, "columns": ["timestamp"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["start"] == "2024-01-01 00:00:00" assert data["end"] == "2024-01-02 03:00:00" def test_time_column_none_no_time_filter() -> None: app = server.app client = app.test_client() payload = { "table": "events", "columns": ["timestamp", "event"], "time_column": "", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert "start" not in data and "end" not in data assert len(data["rows"]) == 4

The test passes, but there’s overflow risk with integer seconds and default time_unit 's'.

I'll use DuckDB to see if the dataset infers "created" as BIGINT or not.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# python - <<'PY' > import duckdb, pandas > import io > csv='created,event\n1704067200,login\n1704070800,logout\n' > con=duckdb.connect() > # read_csv_auto: load from string > con.execute("CREATE TABLE events AS SELECT * FROM read_csv_auto('data.csv', de lim=',')")

I realized I need a file path for read_csv_auto—time to create one!

shell
> PYpython - <<'PY' > import duckdb, io > csv='created,event\n1704067200,login\n1704070800,logout\n' > open('tmp.csv','w').write(csv) > con=duckdb.connect() > con.execute("CREATE TABLE events AS SELECT * FROM read_csv_auto('tmp.csv')") > print(con.execute("PRAGMA table_info('events')").fetchall())

I think I missed an "EOF" after the script. I'll run it again to check.

shell
> PYpython - <<'PY' > import duckdb, io > csv='created,event\n1704067200,login\n1704070800,logout\n' > open('tmp.csv','w').write(csv) > con=duckdb.connect() > con.execute("CREATE TABLE events AS SELECT * FROM read_csv_auto('tmp.csv')") > print(con.execute("PRAGMA table_info('events')").fetchall()) > PY File "<stdin>", line 7 PYpython - <<'PY' ^^ SyntaxError: invalid syntax (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I forgot to add quotes. I'll try again with the correct syntax this time.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# python - <<'PY' > import duckdb, io > csv='created,event\n1704067200,login\n1704070800,logout\n' > open('tmp.csv','w').write(csv) > con=duckdb.connect() > con.execute("CREATE TABLE events AS SELECT * FROM read_csv_auto('tmp.csv')") > print(con.execute("PRAGMA table_info('events')").fetchall()) > PY [(0, 'created', 'BIGINT', False, None, False), (1, 'event', 'VARCHAR', False, No ne, False)] (scubaduck) root@df946f6027ab:/workspace/scubaduck#

The bug occurs with INT32, not BIGINT. I’ll check tests using INT32 columns.

shell
from pathlib import Path import duckdb import pytest from scubaduck import server def _make_payload() -> dict[str, object]: return { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-02 00:00:00", "order_by": "timestamp", "order_dir": "ASC", "limit": 10, "columns": ["timestamp", "event", "value", "user"], "filters": [], } def test_database_types(tmp_path: Path) -> None: csv_file = tmp_path / "events.csv" csv_file.write_text(Path("scubaduck/sample.csv").read_text()) sqlite_file = tmp_path / "events.sqlite" import sqlite3 conn = sqlite3.connect(sqlite_file) conn.execute( "CREATE TABLE events (timestamp TEXT, event TEXT, value INTEGER, user TE XT)" ) with open(csv_file) as f: next(f) for line in f: ts, ev, val, user = line.strip().split(",") conn.execute( "INSERT INTO events VALUES (?, ?, ?, ?)", (ts, ev, int(val), use r) ) conn.commit() conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce ssIssue] duckdb_file = tmp_path / "events.duckdb" con = duckdb.connect(duckdb_file) con.execute( f"CREATE TABLE events AS SELECT * FROM read_csv_auto('{csv_file.as_posix ()}')" ) con.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcces sIssue] for db in (csv_file, sqlite_file, duckdb_file): app = server.create_app(db) client = app.test_client() payload = _make_payload() rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/js on" ) rows = rv.get_json()["rows"] assert len(rows) == 3 def test_sqlite_longvarchar(tmp_path: Path) -> None: sqlite_file = tmp_path / "events.sqlite" import sqlite3 conn = sqlite3.connect(sqlite_file) conn.execute( "CREATE TABLE events (timestamp TEXT, url LONGVARCHAR, title VARCHAR(10) )" ) conn.execute( "INSERT INTO events VALUES ('2024-01-01 00:00:00', 'https://a.com', 'Hom e')" ) conn.commit() conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce ssIssue] app = server.create_app(sqlite_file) client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-01 01:00:00", "order_by": "timestamp", "columns": ["timestamp", "url", "title"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["rows"][0][1] == "https://a.com" def test_sqlite_bigint(tmp_path: Path) -> None: sqlite_file = tmp_path / "big.sqlite" import sqlite3 conn = sqlite3.connect(sqlite_file) conn.execute("CREATE TABLE events (timestamp TEXT, value INTEGER)") big_value = 13385262862605259 conn.execute( "INSERT INTO events VALUES ('2024-01-01 00:00:00', ?)", (big_value,), ) conn.commit() conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce ssIssue] app = server.create_app(sqlite_file) client = app.test_client() payload = { "table": "events", "order_by": "timestamp", "columns": ["timestamp", "value"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["rows"][0][1] == big_value def test_sqlite_boolean_aggregation(tmp_path: Path) -> None: sqlite_file = tmp_path / "bool.sqlite" import sqlite3 conn = sqlite3.connect(sqlite_file) conn.execute("CREATE TABLE events (timestamp TEXT, flag BOOLEAN)") conn.execute("INSERT INTO events VALUES ('2024-01-01 00:00:00', 1)") conn.execute("INSERT INTO events VALUES ('2024-01-01 00:30:00', 0)") conn.commit() conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce ssIssue] app = server.create_app(sqlite_file) client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-02 00:00:00", "graph_type": "table", "aggregate": "Avg", "columns": ["flag"], "show_hits": True, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["rows"][0][0] == 2 assert data["rows"][0][1] == 0.5 def test_envvar_db(monkeypatch: pytest.MonkeyPatch, tmp_path: Path) -> None: csv_file = tmp_path / "custom.csv" csv_file.write_text("timestamp,event,value,user\n2024-01-01 00:00:00,login,5 ,bob\n") monkeypatch.setenv("SCUBADUCK_DB", str(csv_file)) app = server.create_app() client = app.test_client() payload = _make_payload() rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) rows = rv.get_json()["rows"] assert len(rows) == 1 def test_envvar_db_missing(monkeypatch: pytest.MonkeyPatch, tmp_path: Path) -> N one: missing = tmp_path / "missing.sqlite" monkeypatch.setenv("SCUBADUCK_DB", str(missing)) with pytest.raises(FileNotFoundError): server.create_app()
> from scubaduck import server > app = server.create_app("TEST") > client = app.test_client() > payload = { > "table":"events", > "time_column":"ts", > "time_unit":"us", > } > rv = client.post("/api/query", data=json.dumps(payload), content_type="applica tion/json") > print(rv.status_code) > print(rv.get_json()) > PY 200 {'end': '1970-01-01 00:28:24', 'rows': [], 'sql': 'SELECT *\nFROM "events"\nWHER E make_timestamp(CAST("ts" AS BIGINT)) >= \'1970-01-01 00:28:24\' AND make_times tamp(CAST("ts" AS BIGINT)) <= \'1970-01-01 00:28:24\'', 'start': '1970-01-01 00: 28:24'} (scubaduck) root@df946f6027ab:/workspace/scubaduck#

The server uses a wrong method to compute start/end, interpreting seconds as microseconds.

I’ll check if timestamps under 1e12 should be treated as seconds, above as microseconds.

The issue might be from missing start/end values, not time unit misinterpretation.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# python - <<'PY' > import json > from scubaduck import server > app = server.create_app("TEST") > client = app.test_client() > payload = { > "table":"events", > "time_column":"ts", > } > rv = client.post("/api/query", data=json.dumps(payload), content_type="applica tion/json") > print(rv.status_code) > print(rv.get_json()) > PY Query failed: SELECT * FROM "events" WHERE make_timestamp(CAST("ts" * 1000000 AS BIGINT)) >= '2024-01-01 00:00:00' AN D make_timestamp(CAST("ts" * 1000000 AS BIGINT)) <= '2024-01-01 01:00:00' Traceback (most recent call last): File "/workspace/scubaduck/scubaduck/server.py", line 660, in query rows = con.execute(sql).fetchall() ^^^^^^^^^^^^^^^^ duckdb.duckdb.OutOfRangeException: Out of Range Error: Overflow in multiplicatio n of INT32 (1704067200 * 1000000)! 400 {'error': 'Out of Range Error: Overflow in multiplication of INT32 (1704067200 * 1000000)!', 'sql': 'SELECT *\nFROM "events"\nWHERE make_timestamp(CAST("ts" * 1 000000 AS BIGINT)) >= \'2024-01-01 00:00:00\' AND make_timestamp(CAST("ts" * 100 0000 AS BIGINT)) <= \'2024-01-01 01:00:00\'', 'traceback': 'Traceback (most rece nt call last):\n File "/workspace/scubaduck/scubaduck/server.py", line 660, in query\n rows = con.execute(sql).fetchall()\n ^^^^^^^^^^^^^^^^\nduck db.duckdb.OutOfRangeException: Out of Range Error: Overflow in multiplication of INT32 (1704067200 * 1000000)!\n'} (scubaduck) root@df946f6027ab:/workspace/scubaduck#

The server overflows with time_column ts when start/end are unspecified, defaulting to 2024. I’ll add tests to check both time_unit scenarios.

I’ll adjust the heuristics for detecting time units, especially for small timestamps, to handle bugs.

I’ll adjust time unit handling to check the timestamp year and multiply if too small.

I’ll add a function to handle edge cases and avoid mis-adjusting timestamps for small units.

I’ll add tests for time_column with units 's' and 'us' to validate the fix.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# python - <<'PY' > import json > from scubaduck import server > app = server.create_app("TEST") > client = app.test_client() > payload = { > "table":"events", > "time_column":"ts", > "time_unit":"us", > } > rv = client.post("/api/query", data=json.dumps(payload), content_type="applica tion/json") > print(rv.get_json()) > PY {'end': '1970-01-01 00:28:24', 'rows': [], 'sql': 'SELECT *\nFROM "events"\nWHER E make_timestamp(CAST("ts" AS BIGINT)) >= \'1970-01-01 00:28:24\' AND make_times tamp(CAST("ts" AS BIGINT)) <= \'1970-01-01 00:28:24\'', 'start': '1970-01-01 00: 28:24'}
(scubaduck) root@df946f6027ab:/workspace/scubaduck# python - <<'PY' > import json > from scubaduck import server > app = server.create_app("TEST") > client = app.test_client() > payload = { > "table":"events", > "time_column":"ts", > "time_unit":"s", > } > rv = client.post("/api/query", data=json.dumps(payload), content_type="applica tion/json") > print(rv.status_code, rv.get_json()) > PY Query failed: SELECT * FROM "events" WHERE make_timestamp(CAST("ts" * 1000000 AS BIGINT)) >= '2024-01-01 00:00:00' AN D make_timestamp(CAST("ts" * 1000000 AS BIGINT)) <= '2024-01-01 01:00:00' Traceback (most recent call last): File "/workspace/scubaduck/scubaduck/server.py", line 660, in query rows = con.execute(sql).fetchall() ^^^^^^^^^^^^^^^^ duckdb.duckdb.OutOfRangeException: Out of Range Error: Overflow in multiplicatio n of INT32 (1704067200 * 1000000)! 400 {'error': 'Out of Range Error: Overflow in multiplication of INT32 (17040672 00 * 1000000)!', 'sql': 'SELECT *\nFROM "events"\nWHERE make_timestamp(CAST("ts" * 1000000 AS BIGINT)) >= \'2024-01-01 00:00:00\' AND make_timestamp(CAST("ts" * 1000000 AS BIGINT)) <= \'2024-01-01 01:00:00\'', 'traceback': 'Traceback (most recent call last):\n File "/workspace/scubaduck/scubaduck/server.py", line 660, in query\n rows = con.execute(sql).fetchall()\n ^^^^^^^^^^^^^^^^\n duckdb.duckdb.OutOfRangeException: Out of Range Error: Overflow in multiplicatio n of INT32 (1704067200 * 1000000)!\n'} (scubaduck) root@df946f6027ab:/workspace/scubaduck#

The overflow problem occurs due to calling _time_expr before casting. I'll fix that and account for microseconds by adjusting the start/end time calculation. Let’s patch server.py to include the new _parse_numeric_time function. After retrieving min/max, I'll apply this conversion.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# sed -n '560,640p' scubaduck/ server.py if need_numeric and not is_numeric: return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) if allow_time and not (is_numeric or is_time): return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) if (params.start is None or params.end is None) and ( params.x_axis or params.time_column ): axis = params.x_axis or params.time_column assert axis is not None row = cast( tuple[datetime | None, datetime | None], con.execute( f'SELECT min({_quote(axis)}), max({_quote(axis)}) FROM "{par ams.table}"' ).fetchall()[0], ) mn, mx = row divisor = { "s": 1, "ms": 1000, "us": 1_000_000, "ns": 1_000_000_000, }.get(params.time_unit, 1) if isinstance(mn, (int, float)): try: mn = datetime.fromtimestamp(int(mn) / divisor, tz=timezone.u tc) except Exception: return ( jsonify( { "error": ( f"Invalid time value {mn} for column {axis}" f" with time_unit {params.time_unit}" ) } ), 400, ) if isinstance(mx, (int, float)): try: mx = datetime.fromtimestamp(int(mx) / divisor, tz=timezone.u tc) except Exception: return ( jsonify( { "error": ( f"Invalid time value {mx} for column {axis}" f" with time_unit {params.time_unit}" ) } ), 400, ) if params.start is None and mn is not None: params.start = ( mn.strftime("%Y-%m-%d %H:%M:%S") if not isinstance(mn, str) else mn ) if params.end is None and mx is not None: params.end = ( mx.strftime("%Y-%m-%d %H:%M:%S") if not isinstance(mx, str) else mx ) bucket_size: int | None = None if params.graph_type == "timeseries": bucket_size = _granularity_seconds( params.granularity, params.start if isinstance(params.start, str) else None, params.end if isinstance(params.end, str) else None, (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I'll begin by patching the _time_expr section earlier in the file. Let's adjust that.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# grep -n "_time_expr" -n scub aduck/server.py 166:def _time_expr(col: str, column_types: Dict[str, str] | None, unit: str) -> str: 212: xexpr = _time_expr(x_axis, column_types, params.time_unit) 304: time_expr = _time_expr(params.time_column, column_types, params.time _unit)
server.py total = max((e - s).total_seconds(), 1) buckets = 100 if gran == "auto" else 500 return max(int(total // buckets), 1) return 3600 def _time_expr(col: str, column_types: Dict[str, str] | None, unit: str) -> str: """Return SQL expression for column interpreted as timestamp.""" qcol = _quote(col) if column_types is None: return qcol ctype = column_types.get(col, "").upper() if not any(t in ctype for t in ["TIMESTAMP", "DATE", "TIME"]): if any( t in ctype for t in [ "INT", "DECIMAL", "REAL", "DOUBLE", "FLOAT", "NUMERIC", "HUGEINT", ] ): if unit == "ns": expr = f"CAST({qcol} AS BIGINT)" return f"make_timestamp_ns({expr})" multiplier = { "s": 1_000_000, "ms": 1_000, "us": 1, }.get(unit, 1_000_000) expr = ( f"CAST({qcol} * {multiplier} AS BIGINT)" if multiplier != 1 else f"CAST({qcol} AS BIGINT)" ) return f"make_timestamp({expr})" return qcol def build_query(params: QueryParams, column_types: Dict[str, str] | None = None) -> str: select_parts: list[str] = [] group_cols = params.group_by[:] selected_for_order = set(params.columns) | set(params.derived_columns.keys() ) if params.graph_type == "timeseries": sec = _granularity_seconds(params.granularity, params.start, params.end) (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I’ll modify _time_expr to cast as BIGINT before multiplication and add a normalization helper.

shell
> *** Begin Patch > *** Update File: scubaduck/server.py > @@ > - multiplier = { > - "s": 1_000_000, > - "ms": 1_000, > - "us": 1, > - }.get(unit, 1_000_000) > - expr = ( > - f"CAST({qcol} * {multiplier} AS BIGINT)" > - if multiplier != 1 > - else f"CAST({qcol} AS BIGINT)" > - ) > - return f"make_timestamp({expr})" > + multiplier = { > + "s": 1_000_000, > + "ms": 1_000, > + "us": 1, > + }.get(unit, 1_000_000) > + base = f"CAST({qcol} AS BIGINT)" > + expr = ( > + f"CAST({base} * {multiplier} AS BIGINT)" if multiplier != 1 e lse base > + ) > + return f"make_timestamp({expr})" > *** End Patch > PATCH Success. Updated the following files: M scubaduck/server.py (scubaduck) root@df946f6027ab:/workspace/scubaduck#

The patch worked; now I'll focus on adjusting the start and end calculations.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# sed -n '560,640p' scubaduck/ server.py return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) if allow_time and not (is_numeric or is_time): return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) if (params.start is None or params.end is None) and ( params.x_axis or params.time_column ): axis = params.x_axis or params.time_column assert axis is not None row = cast( tuple[datetime | None, datetime | None], con.execute( f'SELECT min({_quote(axis)}), max({_quote(axis)}) FROM "{par ams.table}"' ).fetchall()[0], ) mn, mx = row divisor = { "s": 1, "ms": 1000, "us": 1_000_000, "ns": 1_000_000_000, }.get(params.time_unit, 1) if isinstance(mn, (int, float)): try: mn = datetime.fromtimestamp(int(mn) / divisor, tz=timezone.u tc) except Exception: return ( jsonify( { "error": ( f"Invalid time value {mn} for column {axis}" f" with time_unit {params.time_unit}" ) } ), 400, ) if isinstance(mx, (int, float)): try: mx = datetime.fromtimestamp(int(mx) / divisor, tz=timezone.u tc) except Exception: return ( jsonify( { "error": ( f"Invalid time value {mx} for column {axis}" f" with time_unit {params.time_unit}" ) } ), 400, ) if params.start is None and mn is not None: params.start = ( mn.strftime("%Y-%m-%d %H:%M:%S") if not isinstance(mn, str) else mn ) if params.end is None and mx is not None: params.end = ( mx.strftime("%Y-%m-%d %H:%M:%S") if not isinstance(mx, str) else mx ) bucket_size: int | None = None if params.graph_type == "timeseries": bucket_size = _granularity_seconds( params.granularity, params.start if isinstance(params.start, str) else None, params.end if isinstance(params.end, str) else None, ) (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I'll replace the numeric computation of mn and mx with the new helper function.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# apply_patch<<'PATCH' > *** Begin Patch > *** Update File: scubaduck/server.py > @@ > ): > axis = params.x_axis or params.time_column > assert axis is not None > row = cast( > tuple[datetime | None, datetime | None], > con.execute( > f'SELECT min({_quote(axis)}), max({_quote(axis)}) FROM "{ params.table}"' > ).fetchall()[0], > ) > mn, mx = row > - divisor = { > - "s": 1, > - "ms": 1000, > - "us": 1_000_000, > - "ns": 1_000_000_000, > - }.get(params.time_unit, 1) > - if isinstance(mn, (int, float)): > - try: > - mn = datetime.fromtimestamp(int(mn) / divisor, tz=timezon e.utc) > - except Exception: > - return ( > - jsonify( > - { > - "error": ( > - f"Invalid time value {mn} for column {axi s}" > - f" with time_unit {params.time_unit}" > - ) > - } > - ), > - 400, > - ) > - if isinstance(mx, (int, float)): > - try: > - mx = datetime.fromtimestamp(int(mx) / divisor, tz=timezon e.utc) > - except Exception: > - return ( > - jsonify( > - { > - "error": ( > - f"Invalid time value {mx} for column {axi s}" > - f" with time_unit {params.time_unit}" > - ) > - } > - ), > - 400, > - ) > + if isinstance(mn, (int, float)): > + try: > + mn = _numeric_to_datetime(mn, params.time_unit) > + except Exception: > + return ( > + jsonify( > + { > + "error": ( > + f"Invalid time value {mn} for column {axi s}" > + f" with time_unit {params.time_unit}" > + ) > + } > + ), > + 400, > + ) > + if isinstance(mx, (int, float)): > + try: > + mx = _numeric_to_datetime(mx, params.time_unit) > + except Exception: > + return ( > + jsonify( > + { > + "error": ( > + f"Invalid time value {mx} for column {axi s}" > + f" with time_unit {params.time_unit}" > + ) > + } > + ), > + 400, > + ) > *** End Patch > PATCH Success. Updated the following files: M scubaduck/server.py (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I need to add the _numeric_to_datetime function near parse_time. I'll search for parse_time next.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# grep -n "parse_time(" -n scu baduck/server.py 101:def parse_time(val: str | None) -> str | None: 446: start = parse_time(payload.get("start")) 447: end = parse_time(payload.get("end"))
con.execute("INSERT INTO extra VALUES (1704067200, 'x', 1)") con.execute("INSERT INTO extra VALUES (1704070800, 'y', 2)") return con _REL_RE = re.compile( r"([+-]?\d+(?:\.\d*)?)\s*(hour|hours|day|days|week|weeks|fortnight|fortnight s)", re.IGNORECASE, ) def parse_time(val: str | None) -> str | None: """Parse an absolute or relative time string into ``YYYY-MM-DD HH:MM:SS``."" " if val is None or val == "": return None s = val.strip() if s.lower() == "now": dt = datetime.now(timezone.utc) return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S") m = _REL_RE.fullmatch(s) if m: qty = float(m.group(1)) unit = m.group(2).lower() delta: timedelta if unit.startswith("hour"): delta = timedelta(hours=qty) elif unit.startswith("day"): delta = timedelta(days=qty) elif unit.startswith("week"): delta = timedelta(weeks=qty) elif unit.startswith("fortnight"): delta = timedelta(weeks=2 * qty) else: # pragma: no cover - defensive raise ValueError(f"Unsupported unit: {unit}") dt = datetime.now(timezone.utc) + delta return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S") dt = dtparser.parse(s) return dt.replace(microsecond=0, tzinfo=None).strftime("%Y-%m-%d %H:%M:%S") def _granularity_seconds(granularity: str, start: str | None, end: str | None) - > int: gran = granularity.lower() mapping = { "1 second": 1, "5 seconds": 5, "10 seconds": 10, "30 seconds": 30, "1 minute": 60, "4 minutes": 240, (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I think adding a _numeric_to_datetime helper after parse_time could be useful.

shell
> *** Update File: scubaduck/server.py > @@ > def parse_time(val: str | None) -> str | None: > @@ > dt = dtparser.parse(s) > return dt.replace(microsecond=0, tzinfo=None).strftime("%Y-%m-%d %H:%M:%S ") > + > + > +def _numeric_to_datetime(value: int | float, unit: str) -> datetime: > + """Convert a numeric timestamp ``value`` with unit ``unit`` to ``datetime ``. > + > + Heuristically fall back to seconds when the converted value is before 199 0 > + but the seconds interpretation is in a reasonable range. This handles > + integer columns stored in seconds even when ``unit`` is mistakenly set to a > + finer granularity. > + """ > + > + divisor = { > + "s": 1, > + "ms": 1000, > + "us": 1_000_000, > + "ns": 1_000_000_000, > + }.get(unit, 1) > + > + dt = datetime.fromtimestamp(int(value) / divisor, tz=timezone.utc) > + if unit != "s" and dt.year < 1990: > + alt = datetime.fromtimestamp(int(value), tz=timezone.utc) > + if alt.year >= 1990: > + dt = alt > + return dt > *** End Patch > PATCH Success. Updated the following files: M scubaduck/server.py (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I confirmed the imports are correct. Now, I'll update the start/end patch and check formatting.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# grep -n "_numeric_to_datetim e" -n scubaduck/server.py 132:def _numeric_to_datetime(value: int | float, unit: str) -> datetime: 615: mn = _numeric_to_datetime(mn, params.time_unit) 630: mx = _numeric_to_datetime(mx, params.time_unit) (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I've replaced the dividing code and removed the 'divisor' variable—checking around the patch now.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# sed -n '602,640p' scubaduck/ server.py params.x_axis or params.time_column ): axis = params.x_axis or params.time_column assert axis is not None row = cast( tuple[datetime | None, datetime | None], con.execute( f'SELECT min({_quote(axis)}), max({_quote(axis)}) FROM "{par ams.table}"' ).fetchall()[0], ) mn, mx = row if isinstance(mn, (int, float)): try: mn = _numeric_to_datetime(mn, params.time_unit) except Exception: return ( jsonify( { "error": ( f"Invalid time value {mn} for column {axis}" f" with time_unit {params.time_unit}" ) } ), 400, ) if isinstance(mx, (int, float)): try: mx = _numeric_to_datetime(mx, params.time_unit) except Exception: return ( jsonify( { "error": ( f"Invalid time value {mx} for column {axis}" f" with time_unit {params.time_unit}" ) } ),
(scubaduck) root@df946f6027ab:/workspace/scubaduck# sed -n '640,680p' scubaduck/ server.py ), 400, ) if params.start is None and mn is not None: params.start = ( mn.strftime("%Y-%m-%d %H:%M:%S") if not isinstance(mn, str) else mn ) if params.end is None and mx is not None: params.end = ( mx.strftime("%Y-%m-%d %H:%M:%S") if not isinstance(mx, str) else mx ) bucket_size: int | None = None if params.graph_type == "timeseries": bucket_size = _granularity_seconds( params.granularity, params.start if isinstance(params.start, str) else None, params.end if isinstance(params.end, str) else None, ) if ( params.limit is not None and params.start is not None and params.end is not None ): try: start_dt = dtparser.parse(params.start) end_dt = dtparser.parse(params.end) buckets = math.ceil( (end_dt - start_dt).total_seconds() / bucket_size ) if buckets > 1: params.limit *= buckets except Exception: pass sql = build_query(params, column_types) try: rows = con.execute(sql).fetchall() except Exception as exc: tb = traceback.format_exc() print(f"Query failed:\n{sql}\n{tb}") (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I'll add new tests to test_server_time.py to confirm start and end times.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# sed -n '280,340p' tests/test _server_time.py (scubaduck) root@df946f6027ab:/workspace/scubaduck#

The file ends around line 260 or 280, but I’ll check near line 240.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# wc -n tests/test_server_time .py wc: invalid option -- 'n' Try 'wc --help' for more information.
(scubaduck) root@df946f6027ab:/workspace/scubaduck# wc -l tests/test_server_time .py 198 tests/test_server_time.py (scubaduck) root@df946f6027ab:/workspace/scubaduck#

The file is 198 lines long; I'll open it toward the bottom to append.

shell
_time.py ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 1 assert data["rows"][0][3] == "charlie" def test_default_start_end_returned() -> None: app = server.app client = app.test_client() payload = { "table": "events", "order_by": "timestamp", "limit": 5, "columns": ["timestamp"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["start"] == "2024-01-01 00:00:00" assert data["end"] == "2024-01-02 03:00:00" def test_time_column_none_no_time_filter() -> None: app = server.app client = app.test_client() payload = { "table": "events", "columns": ["timestamp", "event"], "time_column": "", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert "start" not in data and "end" not in data assert len(data["rows"]) == 4 (scubaduck) root@df946f6027ab:/workspace/scubaduck#

The file ends at test_time_column_none_no_time_filter. I'll add tests right after that.

shell
> *** Update File: tests/test_server_time.py > @@ > def test_time_column_none_no_time_filter() -> None: > @@ > assert len(data["rows"]) == 4 > + > + > +def test_test_dataset_int32_time_s() -> None: > + app = server.create_app("TEST") > + client = app.test_client() > + payload = { > + "table": "events", > + "time_column": "ts", > + "time_unit": "s", > + } > + rv = client.post( > + "/api/query", data=json.dumps(payload), content_type="application/jso n" > + ) > + data = rv.get_json() > + assert rv.status_code == 200 > + assert data["start"] == "2024-01-01 00:00:00" > + assert data["end"] == "2024-01-01 01:00:00" > + assert len(data["rows"]) == 2 > + > + > +def test_test_dataset_int32_time_us() -> None: > + app = server.create_app("TEST") > + client = app.test_client() > + payload = { > + "table": "events", > + "time_column": "ts", > + "time_unit": "us", > + } > + rv = client.post( > + "/api/query", data=json.dumps(payload), content_type="application/jso n" > + ) > + data = rv.get_json() > + assert rv.status_code == 200 > + assert data["start"] == "2024-01-01 00:00:00" > + assert data["end"] == "2024-01-01 01:00:00" > + assert len(data["rows"]) == 2 > *** End Patch > PATCH Success. Updated the following files: M tests/test_server_time.py (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I’ll go ahead and run ruff format now that I’ve updated the tests.

shell
.py tests/test_server_time.py >/tmp/ruff_format.log && tail -n 20 /tmp/ruff_form at.log 1 file reformatted, 1 file left unchanged (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I'm running the ruff check now to inspect the code.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# ruff check scubaduck/server. py tests/test_server_time.py >/tmp/ruff_check.log && tail -n 20 /tmp/ruff_check. log All checks passed!
(scubaduck) root@df946f6027ab:/workspace/scubaduck# pyright >/tmp/pyright.log && tail -n 20 /tmp/pyright.log
0 errors, 0 warnings, 0 informations
(scubaduck) root@df946f6027ab:/workspace/scubaduck# cat /tmp/pyright.log 0 errors, 0 warnings, 0 informations (scubaduck) root@df946f6027ab:/workspace/scubaduck#

It's time to run pytest and see if all tests pass. Let's go!

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# pytest -q >/tmp/pytest.log & & tail -n 20 /tmp/pytest.log









bringing up nodes... bringing up nodes... ........................................................................ [ 63%] ..................................F...... [100%] =================================== FAILURES =================================== _______________________ test_test_dataset_int32_time_us ________________________ [gw1] linux -- Python 3.12.3 /workspace/scubaduck/.venv/bin/python Traceback (most recent call last): File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/runner.p y", line 341, in from_call result: TResult | None = func() ^^^^^^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/runner.p y", line 242, in <lambda> lambda: runtest_hook(item=item, **kwds), when=when, reraise=reraise ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_hooks.py ", line 512, in __call__ return self._hookexec(self.name, self._hookimpls.copy(), kwargs, firstresult ) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_manager. py", line 120, in _hookexec return self._inner_hookexec(hook_name, methods, kwargs, firstresult) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_callers. py", line 167, in _multicall raise exception File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_callers. py", line 139, in _multicall teardown.throw(exception) File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/threadex ception.py", line 92, in pytest_runtest_call yield from thread_exception_runtest_hook() File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/threadex ception.py", line 68, in thread_exception_runtest_hook yield File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_callers. py", line 139, in _multicall teardown.throw(exception) File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/unraisab leexception.py", line 95, in pytest_runtest_call yield from unraisable_exception_runtest_hook() File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/unraisab leexception.py", line 70, in unraisable_exception_runtest_hook yield File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_callers. py", line 139, in _multicall teardown.throw(exception) File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/logging. py", line 846, in pytest_runtest_call yield from self._runtest_for(item, "call") File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/logging. py", line 829, in _runtest_for yield File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_callers. py", line 139, in _multicall teardown.throw(exception) File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/capture. py", line 898, in pytest_runtest_call return (yield) ^^^^^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_callers. py", line 139, in _multicall teardown.throw(exception) File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/skipping .py", line 257, in pytest_runtest_call return (yield) ^^^^^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_callers. py", line 121, in _multicall res = hook_impl.function(*args) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/runner.p y", line 174, in pytest_runtest_call item.runtest() File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/python.p y", line 1627, in runtest self.ihook.pytest_pyfunc_call(pyfuncitem=self) File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_hooks.py ", line 512, in __call__ return self._hookexec(self.name, self._hookimpls.copy(), kwargs, firstresult ) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_manager. py", line 120, in _hookexec return self._inner_hookexec(hook_name, methods, kwargs, firstresult) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_callers. py", line 167, in _multicall raise exception File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/pluggy/_callers. py", line 121, in _multicall res = hook_impl.function(*args) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/workspace/scubaduck/.venv/lib/python3.12/site-packages/_pytest/python.p y", line 159, in pytest_pyfunc_call result = testfunction(**testargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/workspace/scubaduck/tests/test_server_time.py", line 234, in test_test_ dataset_int32_time_us assert len(data["rows"]) == 2 AssertionError: assert 0 == 2 + where 0 = len([]) =========================== short test summary info ============================ FAILED tests/test_server_time.py::test_test_dataset_int32_time_us - assert 0 ... 1 failed, 112 passed in 15.94s (scubaduck) root@df946f6027ab:/workspace/scubaduck#

Pytest failed since the fix didn't compute start/end as expected. I'll check the function.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# python - <<'PY' > import json > from scubaduck import server > app=server.create_app("TEST") > client=app.test_client() > payload={"table":"events","time_column":"ts","time_unit":"us"} > rv=client.post("/api/query",data=json.dumps(payload),content_type="application /json") > print(rv.get_json()) > PY {'end': '2024-01-01 01:00:00', 'rows': [], 'sql': 'SELECT *\nFROM "events"\nWHER E make_timestamp(CAST("ts" AS BIGINT)) >= \'2024-01-01 00:00:00\' AND make_times tamp(CAST("ts" AS BIGINT)) <= \'2024-01-01 01:00:00\'', 'start': '2024-01-01 00: 00:00'} (scubaduck) root@df946f6027ab:/workspace/scubaduck#

The solution now adjusts _time_expr to handle integer columns like INT32 correctly, treating them as seconds.

I'll adjust _time_expr to treat 32-bit integers as seconds when unit is "ms" or "us".

I'll treat 'ns' as seconds if column is 32-bit, using a different conversion.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# sed -n '164,208p' scubaduck/ server.py "4 minutes": 240, "5 minutes": 300, "10 minutes": 600, "15 minutes": 900, "30 minutes": 1800, "1 hour": 3600, "3 hours": 10800, "6 hours": 21600, "1 day": 86400, "1 week": 604800, "30 days": 2592000, } if gran in mapping: return mapping[gran] if gran in {"auto", "fine"} and start and end: try: s = dtparser.parse(start) e = dtparser.parse(end) except Exception: return 3600 total = max((e - s).total_seconds(), 1) buckets = 100 if gran == "auto" else 500 return max(int(total // buckets), 1) return 3600 def _time_expr(col: str, column_types: Dict[str, str] | None, unit: str) -> str: """Return SQL expression for column interpreted as timestamp.""" qcol = _quote(col) if column_types is None: return qcol ctype = column_types.get(col, "").upper() if not any(t in ctype for t in ["TIMESTAMP", "DATE", "TIME"]): if any( t in ctype for t in [ "INT", "DECIMAL", "REAL", "DOUBLE", "FLOAT", "NUMERIC", "HUGEINT", ] ):
): if unit == "ns": expr = f"CAST({qcol} AS BIGINT)" return f"make_timestamp_ns({expr})" multiplier = { "s": 1_000_000, "ms": 1_000, "us": 1, }.get(unit, 1_000_000) base = f"CAST({qcol} AS BIGINT)" expr = f"CAST({base} * {multiplier} AS BIGINT)" if multiplier != 1 e lse base return f"make_timestamp({expr})" return qcol def build_query(params: QueryParams, column_types: Dict[str, str] | None = None) -> str: select_parts: list[str] = [] group_cols = params.group_by[:] selected_for_order = set(params.columns) | set(params.derived_columns.keys() ) if params.graph_type == "timeseries": sec = _granularity_seconds(params.granularity, params.start, params.end) x_axis = params.x_axis or params.time_column if x_axis is None: raise ValueError("x_axis required for timeseries") xexpr = _time_expr(x_axis, column_types, params.time_unit) if params.start: bucket_expr = ( f"TIMESTAMP '{params.start}' + INTERVAL '{sec} second' * " f"CAST(floor((epoch({xexpr}) - epoch(TIMESTAMP '{params.start}') )/{sec}) AS BIGINT)" ) else: bucket_expr = ( f"TIMESTAMP 'epoch' + INTERVAL '{sec} second' * " f"CAST(floor(epoch({xexpr})/{sec}) AS BIGINT)" ) select_parts.append(f"{bucket_expr} AS bucket") group_cols = ["bucket"] + group_cols selected_for_order.add("bucket") has_agg = bool(group_cols) or params.aggregate is not None if has_agg: (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I'm working on patching the _time_expr function now.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# apply_patch<<'PATCH' > *** Begin Patch > *** Update File: scubaduck/server.py > @@ > - if any( > - t in ctype > - for t in [ > - "INT", > - "DECIMAL", > - "REAL", > - "DOUBLE", > - "FLOAT", > - "NUMERIC", > - "HUGEINT", > - ] > - ): > - if unit == "ns": > - expr = f"CAST({qcol} AS BIGINT)" > - return f"make_timestamp_ns({expr})" > - > - multiplier = { > - "s": 1_000_000, > - "ms": 1_000, > - "us": 1, > - }.get(unit, 1_000_000) > - base = f"CAST({qcol} AS BIGINT)" > - expr = f"CAST({base} * {multiplier} AS BIGINT)" if multiplier != 1 else base > - return f"make_timestamp({expr})" > + if any( > + t in ctype > + for t in [ > + "INT", > + "DECIMAL", > + "REAL", > + "DOUBLE", > + "FLOAT", > + "NUMERIC", > + "HUGEINT", > + ] > + ): > + if unit == "ns": > + # Use nanosecond helper unless column cannot represent such l arge values > + if "INT" in ctype and "BIGINT" not in ctype and "HUGEINT" not in ctype: > + unit = "s" > + else: > + expr = f"CAST({qcol} AS BIGINT)" > + return f"make_timestamp_ns({expr})" > + > + if unit != "s" and "INT" in ctype and "BIGINT" not in ctype and " HUGEINT" not in ctype: > + # 32-bit integers cannot store sub-second precision for moder n dates > + unit = "s" > + > + multiplier = { > + "s": 1_000_000, > + "ms": 1_000, > + "us": 1, > + }.get(unit, 1_000_000) > + base = f"CAST({qcol} AS BIGINT)" > + expr = f"CAST({base} * {multiplier} AS BIGINT)" if multiplier != 1 else base > + return f"make_timestamp({expr})" > *** End Patch > PATCH Success. Updated the following files: M scubaduck/server.py (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I'll run ruff format once more to ensure everything is in order.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# ruff format scubaduck/server .py tests/test_server_time.py >/tmp/ruff_format.log && tail -n 20 /tmp/ruff_form at.log 1 file reformatted, 1 file left unchanged (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I'll rerun the ruff check to ensure everything looks good.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# ruff check scubaduck/server. py tests/test_server_time.py >/tmp/ruff_check.log && tail -n 20 /tmp/ruff_check. log All checks passed! (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I’ll run Pyright again to check for any issues.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# pyright >/tmp/pyright.log && tail -n 20 /tmp/pyright.log
0 errors, 0 warnings, 0 informations
(scubaduck) root@df946f6027ab:/workspace/scubaduck# cat /tmp/pyright.log 0 errors, 0 warnings, 0 informations (scubaduck) root@df946f6027ab:/workspace/scubaduck#

Time to rerun the pytest test suite to check the results.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# pytest -q >/tmp/pytest.log & & tail -n 20 /tmp/pytest.log






bringing up nodes... bringing up nodes... ........................................................................ [ 63%] ......................................... [100%] 113 passed in 14.87s (scubaduck) root@df946f6027ab:/workspace/scubaduck#

All tests passed, so it's time to commit the changes!

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# git status --short M scubaduck/server.py M tests/test_server_time.py ?? tmp.csv (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I'll clean up by deleting the tmp.csv file left from earlier.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# rm tmp.csv
(scubaduck) root@df946f6027ab:/workspace/scubaduck# git status --short M scubaduck/server.py M tests/test_server_time.py (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I'm going ahead and committing the changes now.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# git add scubaduck/server.py tests/test_server_time.py
(scubaduck) root@df946f6027ab:/workspace/scubaduck# git commit -m "fix(server): handle int time columns" && git status --short [work 950be3b] fix(server): handle int time columns 2 files changed, 79 insertions(+), 15 deletions(-)
(scubaduck) root@df946f6027ab:/workspace/scubaduck# git status --short (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I'll gather the lines for modifications in scubaduck/server.py, focusing on those functions.

shell
sed -n '120,150p' 120 delta = timedelta(weeks=qty) 121 elif unit.startswith("fortnight"): 122 delta = timedelta(weeks=2 * qty) 123 else: # pragma: no cover - defensive 124 raise ValueError(f"Unsupported unit: {unit}") 125 dt = datetime.now(timezone.utc) + delta 126 return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S") 127 128 dt = dtparser.parse(s) 129 return dt.replace(microsecond=0, tzinfo=None).strftime("%Y-%m-%d %H: %M:%S") 130 131 132 def _numeric_to_datetime(value: int | float, unit: str) -> datetime: 133 """Convert a numeric timestamp ``value`` with unit ``unit`` to ``dat etime``. 134 135 Heuristically fall back to seconds when the converted value is befor e 1990 136 but the seconds interpretation is in a reasonable range. This handl es 137 integer columns stored in seconds even when ``unit`` is mistakenly s et to a 138 finer granularity. 139 """ 140 141 divisor = { 142 "s": 1, 143 "ms": 1000, 144 "us": 1_000_000, 145 "ns": 1_000_000_000, 146 }.get(unit, 1) 147 148 dt = datetime.fromtimestamp(int(value) / divisor, tz=timezone.utc) 149 if unit != "s" and dt.year < 1990: 150 alt = datetime.fromtimestamp(int(value), tz=timezone.utc)
(scubaduck) root@df946f6027ab:/workspace/scubaduck# nl -ba scubaduck/server.py | sed -n '150,175p' 150 alt = datetime.fromtimestamp(int(value), tz=timezone.utc) 151 if alt.year >= 1990: 152 dt = alt 153 return dt 154 155 156 def _granularity_seconds(granularity: str, start: str | None, end: str | None) -> int: 157 gran = granularity.lower() 158 mapping = { 159 "1 second": 1, 160 "5 seconds": 5, 161 "10 seconds": 10, 162 "30 seconds": 30, 163 "1 minute": 60, 164 "4 minutes": 240, 165 "5 minutes": 300, 166 "10 minutes": 600, 167 "15 minutes": 900, 168 "30 minutes": 1800, 169 "1 hour": 3600, 170 "3 hours": 10800, 171 "6 hours": 21600, 172 "1 day": 86400, 173 "1 week": 604800, 174 "30 days": 2592000, 175 } (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I'll focus on getting the lines around the _time_expr patch.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# nl -ba scubaduck/server.py | sed -n '200,240p' 200 "INT", 201 "DECIMAL", 202 "REAL", 203 "DOUBLE", 204 "FLOAT", 205 "NUMERIC", 206 "HUGEINT", 207 ] 208 ): 209 if unit == "ns": 210 # Use nanosecond helper unless column cannot represent s uch large values 211 if "INT" in ctype and "BIGINT" not in ctype and "HUGEINT " not in ctype: 212 unit = "s" 213 else: 214 expr = f"CAST({qcol} AS BIGINT)" 215 return f"make_timestamp_ns({expr})" 216 217 if ( 218 unit != "s" 219 and "INT" in ctype 220 and "BIGINT" not in ctype 221 and "HUGEINT" not in ctype 222 ): 223 # 32-bit integers cannot store sub-second precision for modern dates 224 unit = "s" 225 226 multiplier = { 227 "s": 1_000_000, 228 "ms": 1_000, 229 "us": 1, 230 }.get(unit, 1_000_000) 231 base = f"CAST({qcol} AS BIGINT)" 232 expr = f"CAST({base} * {multiplier} AS BIGINT)" if multiplie r != 1 else base 233 return f"make_timestamp({expr})" 234 return qcol 235 236 237 def build_query(params: QueryParams, column_types: Dict[str, str] | None = None) -> str: 238 select_parts: list[str] = [] 239 group_cols = params.group_by[:] 240 selected_for_order = set(params.columns) | set(params.derived_column s.keys()) (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I'll get the relevant line ranges around the patch in tests/test_server_time.py.

shell
(scubaduck) root@df946f6027ab:/workspace/scubaduck# nl -ba tests/test_server_tim e.py | sed -n '208,266p' 208 } 209 rv = client.post( 210 "/api/query", data=json.dumps(payload), content_type="applicatio n/json" 211 ) 212 data = rv.get_json() 213 assert rv.status_code == 200 214 assert data["start"] == "2024-01-01 00:00:00" 215 assert data["end"] == "2024-01-01 01:00:00" 216 assert len(data["rows"]) == 2 217 218 219 def test_test_dataset_int32_time_us() -> None: 220 app = server.create_app("TEST") 221 client = app.test_client() 222 payload = { 223 "table": "events", 224 "time_column": "ts", 225 "time_unit": "us", 226 } 227 rv = client.post( 228 "/api/query", data=json.dumps(payload), content_type="applicatio n/json" 229 ) 230 data = rv.get_json() 231 assert rv.status_code == 200 232 assert data["start"] == "2024-01-01 00:00:00" 233 assert data["end"] == "2024-01-01 01:00:00" 234 assert len(data["rows"]) == 2 (scubaduck) root@df946f6027ab:/workspace/scubaduck#

I'm drafting the PR message to summarize the changes now.