Task ID: task_e_682fd50fbab4832389420699355efed1
Configuring language runtimes...
+ rm -- /tmp/FHwm68-setup_script.sh
+ source ./codex_setup.sh
++ uv sync --frozen
Using CPython 3.12.3 interpreter at: /usr/bin/python3.12
Creating virtual environment at: .venv
Building scubaduck @ file:///workspace/scubaduck
Downloading playwright (43.1MiB)
Downloading ruff (11.0MiB)
Downloading duckdb (19.3MiB)
Downloading pyright (5.3MiB)
Downloading ruff
Built scubaduck @ file:///workspace/scubaduck
Downloading duckdb
Downloading playwright
Downloading pyright
Prepared 33 packages in 2.58s
Installed 33 packages in 104ms
+ blinker==1.9.0
+ certifi==2025.4.26
+ charset-normalizer==3.4.2
+ click==8.2.0
+ duckdb==1.2.2
+ execnet==2.1.1
+ flask==3.1.1
+ greenlet==3.2.2
+ idna==3.10
+ iniconfig==2.1.0
+ itsdangerous==2.2.0
+ jinja2==3.1.6
+ markupsafe==3.0.2
+ nodeenv==1.9.1
+ packaging==25.0
+ playwright==1.52.0
+ pluggy==1.6.0
+ pyee==13.0.0
+ pyright==1.1.400
+ pytest==8.3.5
+ pytest-base-url==2.1.0
+ pytest-playwright==0.7.0
+ pytest-xdist==3.6.1
+ python-dateutil==2.9.0.post0
+ python-slugify==8.0.4
+ requests==2.32.3
+ ruff==0.11.10
+ scubaduck==0.1.0 (from file:///workspace/scubaduck)
+ six==1.17.0
+ text-unidecode==1.3
+ typing-extensions==4.13.2
+ urllib3==2.4.0
+ werkzeug==3.1.3
++ source .venv/bin/activate
+++ '[' -z '' ']'
+++ '[' -n x ']'
+++ SCRIPT_PATH=.venv/bin/activate
+++ '[' .venv/bin/activate = /tmp/FHwm68-setup_script.sh ']'
+++ deactivate nondestructive
+++ unset -f pydoc
+++ '[' -z '' ']'
+++ '[' -z '' ']'
+++ hash -r
+++ '[' -z '' ']'
+++ unset VIRTUAL_ENV
+++ unset VIRTUAL_ENV_PROMPT
+++ '[' '!' nondestructive = nondestructive ']'
+++ VIRTUAL_ENV=/workspace/scubaduck/.venv
+++ '[' linux-gnu = cygwin ']'
+++ '[' linux-gnu = msys ']'
+++ export VIRTUAL_ENV
+++ '[' -z '' ']'
+++ unset SCRIPT_PATH
+++ _OLD_VIRTUAL_PATH=/root/.cargo/bin:/root/.rbenv/shims:/root/.rbenv/bin:/root/.rbenv/shims:/root/.local/share/swiftly/bin:/root/.bun/bin:/root/.nvm/versions/node/v22.16.0/bin:/root/.pyenv/shims:3441PYENV_ROOT/shims:/root/.pyenv/bin:/usr/local/go/bin:/root/go/bin:/root/.rbenv/bin:/root/.rbenv/shims:/root/.bun/bin:/root/.local/bin:/root/.pyenv/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
+++ PATH=/workspace/scubaduck/.venv/bin:/root/.cargo/bin:/root/.rbenv/shims:/root/.rbenv/bin:/root/.rbenv/shims:/root/.local/share/swiftly/bin:/root/.bun/bin:/root/.nvm/versions/node/v22.16.0/bin:/root/.pyenv/shims:3441PYENV_ROOT/shims:/root/.pyenv/bin:/usr/local/go/bin:/root/go/bin:/root/.rbenv/bin:/root/.rbenv/shims:/root/.bun/bin:/root/.local/bin:/root/.pyenv/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
+++ export PATH
+++ '[' xscubaduck '!=' x ']'
+++ VIRTUAL_ENV_PROMPT=scubaduck
+++ export VIRTUAL_ENV_PROMPT
+++ '[' -z '' ']'
+++ '[' -z '' ']'
+++ _OLD_VIRTUAL_PS1=
+++ PS1='(scubaduck) '
+++ export PS1
+++ alias pydoc
+++ true
+++ hash -r
++ python -c 'import os; import duckdb; con = duckdb.connect(); con.execute(f"SET http_proxy = '\''{os.getenv("HTTP_PROXY")}'\''"); con.execute("INSTALL '\''sqlite'\'';")'
++ playwright install chromium
Downloading Chromium 136.0.7103.25 (playwright build v1169) from https://cdn.playwright.dev/dbazure/download/playwright/builds/chromium/1169/chromium-linux.zip
167.7 MiB [] 0% 0.0s167.7 MiB [] 0% 29.7s167.7 MiB [] 0% 29.1s167.7 MiB [] 0% 20.7s167.7 MiB [] 0% 13.2s167.7 MiB [] 0% 9.9s167.7 MiB [] 1% 6.7s167.7 MiB [] 2% 5.5s167.7 MiB [] 2% 4.3s167.7 MiB [] 3% 3.6s167.7 MiB [] 4% 3.1s167.7 MiB [] 5% 3.0s167.7 MiB [] 6% 3.0s167.7 MiB [] 6% 2.9s167.7 MiB [] 7% 2.6s167.7 MiB [] 9% 2.4s167.7 MiB [] 10% 2.3s167.7 MiB [] 11% 2.2s167.7 MiB [] 12% 2.1s167.7 MiB [] 13% 2.0s167.7 MiB [] 15% 1.9s167.7 MiB [] 17% 1.8s167.7 MiB [] 19% 1.6s167.7 MiB [] 20% 1.6s167.7 MiB [] 22% 1.5s167.7 MiB [] 23% 1.4s167.7 MiB [] 24% 1.4s167.7 MiB [] 26% 1.3s167.7 MiB [] 27% 1.3s167.7 MiB [] 28% 1.2s167.7 MiB [] 30% 1.2s167.7 MiB [] 32% 1.1s167.7 MiB [] 34% 1.1s167.7 MiB [] 36% 1.0s167.7 MiB [] 37% 1.0s167.7 MiB [] 39% 0.9s167.7 MiB [] 40% 0.9s167.7 MiB [] 42% 0.8s167.7 MiB [] 44% 0.8s167.7 MiB [] 46% 0.8s167.7 MiB [] 47% 0.8s167.7 MiB [] 48% 0.7s167.7 MiB [] 49% 0.7s167.7 MiB [] 51% 0.7s167.7 MiB [] 52% 0.7s167.7 MiB [] 54% 0.6s167.7 MiB [] 55% 0.6s167.7 MiB [] 57% 0.6s167.7 MiB [] 58% 0.6s167.7 MiB [] 59% 0.6s167.7 MiB [] 61% 0.5s167.7 MiB [] 63% 0.5s167.7 MiB [] 64% 0.5s167.7 MiB [] 65% 0.5s167.7 MiB [] 66% 0.4s167.7 MiB [] 68% 0.4s167.7 MiB [] 69% 0.4s167.7 MiB [] 70% 0.4s167.7 MiB [] 72% 0.4s167.7 MiB [] 73% 0.4s167.7 MiB [] 74% 0.3s167.7 MiB [] 75% 0.3s167.7 MiB [] 77% 0.3s167.7 MiB [] 79% 0.3s167.7 MiB [] 80% 0.3s167.7 MiB [] 82% 0.2s167.7 MiB [] 84% 0.2s167.7 MiB [] 85% 0.2s167.7 MiB [] 87% 0.2s167.7 MiB [] 89% 0.1s167.7 MiB [] 90% 0.1s167.7 MiB [] 92% 0.1s167.7 MiB [] 94% 0.1s167.7 MiB [] 95% 0.1s167.7 MiB [] 97% 0.0s167.7 MiB [] 99% 0.0s167.7 MiB [] 100% 0.0s
Chromium 136.0.7103.25 (playwright build v1169) downloaded to /root/.cache/ms-playwright/chromium-1169
Downloading FFMPEG playwright build v1011 from https://cdn.playwright.dev/dbazure/download/playwright/builds/ffmpeg/1011/ffmpeg-linux.zip
2.3 MiB [] 0% 0.0s2.3 MiB [] 3% 0.5s2.3 MiB [] 8% 0.4s2.3 MiB [] 17% 0.2s2.3 MiB [] 36% 0.1s2.3 MiB [] 52% 0.1s2.3 MiB [] 99% 0.0s2.3 MiB [] 100% 0.0s
FFMPEG playwright build v1011 downloaded to /root/.cache/ms-playwright/ffmpeg-1011
Downloading Chromium Headless Shell 136.0.7103.25 (playwright build v1169) from https://cdn.playwright.dev/dbazure/download/playwright/builds/chromium/1169/chromium-headless-shell-linux.zip
101.4 MiB [] 0% 0.0s101.4 MiB [] 0% 21.7s101.4 MiB [] 0% 21.2s101.4 MiB [] 0% 14.3s101.4 MiB [] 0% 9.6s101.4 MiB [] 1% 5.6s101.4 MiB [] 2% 4.2s101.4 MiB [] 2% 3.9s101.4 MiB [] 3% 3.4s101.4 MiB [] 4% 3.2s101.4 MiB [] 6% 2.4s101.4 MiB [] 8% 1.9s101.4 MiB [] 10% 1.7s101.4 MiB [] 11% 1.6s101.4 MiB [] 12% 1.6s101.4 MiB [] 14% 1.4s101.4 MiB [] 16% 1.4s101.4 MiB [] 17% 1.4s101.4 MiB [] 19% 1.2s101.4 MiB [] 22% 1.1s101.4 MiB [] 24% 1.0s101.4 MiB [] 26% 0.9s101.4 MiB [] 28% 0.9s101.4 MiB [] 31% 0.8s101.4 MiB [] 33% 0.8s101.4 MiB [] 36% 0.7s101.4 MiB [] 37% 0.7s101.4 MiB [] 39% 0.7s101.4 MiB [] 42% 0.6s101.4 MiB [] 44% 0.6s101.4 MiB [] 46% 0.6s101.4 MiB [] 49% 0.5s101.4 MiB [] 53% 0.5s101.4 MiB [] 57% 0.4s101.4 MiB [] 60% 0.4s101.4 MiB [] 65% 0.3s101.4 MiB [] 68% 0.3s101.4 MiB [] 71% 0.2s101.4 MiB [] 74% 0.2s101.4 MiB [] 76% 0.2s101.4 MiB [] 79% 0.2s101.4 MiB [] 82% 0.1s101.4 MiB [] 84% 0.1s101.4 MiB [] 86% 0.1s101.4 MiB [] 88% 0.1s101.4 MiB [] 90% 0.1s101.4 MiB [] 91% 0.1s101.4 MiB [] 94% 0.0s101.4 MiB [] 97% 0.0s101.4 MiB [] 100% 0.0s
Chromium Headless Shell 136.0.7103.25 (playwright build v1169) downloaded to /root/.cache/ms-playwright/chromium_headless_shell-1169
++ echo 'source .venv/bin/activate'
I’ll start by opening the AGENTS.md to see if there are any useful instructions.
ls
bash: .venv/bin/activate: No such file or directory
root@17549eec6c89:/workspace# ls
scubaduck
root@17549eec6c89:/workspace# cd scubaduck
root@17549eec6c89:/workspace/scubaduck# ls
AGENTS.md codex_setup.sh scubaduck tests
README.md pyproject.toml stubs uv.lock
root@17549eec6c89:/workspace/scubaduck# cat AGENTS.md
- Use "source .venv/bin/activate" to activate the virtual environment before
running any commands
- ONLY use non-interactive commands like cat, sed, apply_patch to do edits.
Do NOT use interactive editors.
- Do NOT attempt to install packages. Only the packages specified in
pyproject.toml are available. You cannot add new packages. If you
desperately want another package, make a note of it in the final PR
description.
- Use conventional commits to format PR title
- There are no nested AGENTS.md files, this is the only agents file
- When using Playwright, ONLY use chromium browser. This browser is already
installed.
- Use "ruff check" to check lint, "ruff format" to autoformat files and
"pyright" to typecheck.
- When writing the PR description, include the original prompt supplied by the
user.
- When you add functionality to the server, add server tests to
tests/test_server.py. When you add features to the frontend, add frontend
tests to tests/test_web.py
I'll check the repo layout and confirm where to add tests based on the instructions.
root@17549eec6c89:/workspace/scubaduck# ls -R
.:
AGENTS.md codex_setup.sh scubaduck tests
README.md pyproject.toml stubs uv.lock
./scubaduck:
__init__.py sample.csv server.py static
./scubaduck/static:
index.html js
./scubaduck/static/js:
chip_input.js table_view.js timeseries_chart.js
sidebar.js time_column.js view_settings.js
./stubs:
duckdb
./stubs/duckdb:
__init__.pyi
./tests:
conftest.py test_server_time.py test_web_graph.py
test_multi_table_web.py test_server_timeseries.py test_web_table.py
test_server.py test_web.py test_web_timeseries.py
test_server_basic.py test_web_basics.py web_utils.py
test_server_db_types.py test_web_chips.py
test_server_errors.py test_web_columns.py
I'll open the README file to get some context on the project.
root@17549eec6c89:/workspace/scubaduck# cat README.md | head -n 20
I really like Scuba (Meta's internal real-time database system). The distributed
, real-time database part of Scuba is quite difficult (and expensive) to replica
te, but I also really like Scuba's UI for doing queries, and I have found myself
wishing that I have access to it even for "small" databases, e.g., I have a sql
ite dataset I want to explore.
Pivotal ideas:
* Time series by default. In the dedicated "time series" view, there are many fe
atures specifically oriented towards working towards tables that represent event
s that occurred over time: the start, end, compare, aggregate and granularity fi
elds all specially privilege the timestamp field. In fact, you can't log events
to Scuba's backing data store without a timestamp, they always come with one. (S
cuba also supports other views that don't presuppose a time series, but the time
series is the most beloved and well used view.) This is in contrast to typical
software which tries to generalize to arbitrary data first, with time series bei
ng added on later.
* It's all about exploration. Scuba is predicated on the idea that you don't kno
w what you're looking for, that you are going to spend time tweaking queries and
changing filters/grouping as part of an investigation to figure out why a syste
m behaves the way it is. So the filters/comparisons/groupings you want to edit a
re always visible on the left sidebar, with the expectation that you're going to
tweak the query to look at something else. Similarly, all the parameters of you
r query get saved into your URL, so your browser history can double up as a quer
y history / you can easily share a query with someone else. This is contrast to
typical software which is often oriented to making pretty dashboards and reports
. (This function is important too, but it's not what I want in exploration mode!
)
* You can fix data problems in the query editor. It's pretty common to have mess
ed up and ended up with a database that doesn't have exactly the columns you nee
d, or some columns that are corrupted in some way. Scuba has pretty robust suppo
rt for defining custom columns with arbitrary SQL functions, grouping over them
as if they were native functions, and doing so with minimal runtime cost (Scuba
aims to turn around your query in milliseconds!) Having to go and run a huge dat
a pipeline to fix your data is a big impediment to exploration; quick and easy c
ustom columns means you can patch over problems when you're investigating and fi
x them for real later.
We're going to build a exploratory data analysis tool like Scuba for time series
database (i.e., a database with a mandatory timestamp representing the time an
event occurred). We'll use DuckDB as the underlying SQL engine served from a Py
thon server, and render the GUI/results as a webpage with vanilla HTML and JS. W
e'll use choices.js to support token inputs. We define a token input to mean a
text input element where as you type a dropdown displays with valid values, and
if you select one or press enter, the selection turns into a token/chip that can
only be deleted as one unit.
To start, we are going to support one views: samples. The samples view only all
ows you to view individual samples from the database, subject to a filter. Our m
ain UI concept is that there is a left sidebar that is the query editor, and the
right side that shows the view. The sidebar is always visible and defaults to
the query parameters of the current view. After you make changes to the query,
clicking the "Dive" button updates the view. The URL of the page encodes all of
the values of the query (and gets updated when you Dive), so the browser's back
button lets you view previous queries.
The query editor's job is to generate a SQL query, which then is applied on the
database, and then the result visualized according to the view.
Here are the settings you can apply to the query. The help text should show up w
hen you mouse over the field name:
* Start/End - Help text: "Sets the start/end of the time range to query. Can be
any kind of datetime string. For example: 'April 23, 2014' or 'yesterday'." The
UI for this selector supports both relative selections (now, -1 hour, -3 hours,
-12 hours, -1 day, -3 days, -1 week, -1 fortnight, -30 days, -90 days) as well a
s specifying an absolute date. The way this field is rendered is there is a fre
e form text box, a drop down arrow (for the relative selectors), and then a cale
ndar button (for date selection).
* Order By - Help text: "Choose a column to sort results by." There is an ASC/D
ESC toggle next to it.
I’ll scroll a bit more to see if there’s any mention of aggregator.
root@17549eec6c89:/workspace/scubaduck# grep -n "aggregate" -n README.md | head
5:* Time series by default. In the dedicated "time series" view, there are many
features specifically oriented towards working towards tables that represent eve
nts that occurred over time: the start, end, compare, aggregate and granularity
fields all specially privilege the timestamp field. In fact, you can't log event
s to Scuba's backing data store without a timestamp, they always come with one.
(Scuba also supports other views that don't presuppose a time series, but the ti
me series is the most beloved and well used view.) This is in contrast to typica
l software which tries to generalize to arbitrary data first, with time series b
eing added on later.
34:ORDER BY aggregate(column)
root@17549eec6c89:/workspace/scubaduck# sed -n '30,80p' README.md
FROM table
WHERE time >= min-timestamp
AND time <= max-timestamp
[AND condition ...]
ORDER BY aggregate(column)
LIMIT number
```
You should write tests for the server backend, demonstrating that at specific qu
ery values we get back the correct rows of data.
## Running the server
Activate the virtual environment and run the Flask development server:
```bash
flask --app scubaduck.server run --debug
```
By default the server loads `sample.csv`. Set the `SCUBADUCK_DB` environment
variable to point at a different database file (CSV, SQLite or DuckDB) if you
want to use another dataset. The special value `TEST` starts the server with a
small in-memory SQLite dataset used by the automated tests. If the file does
not exist, the server will raise a `FileNotFoundError` during startup.
I need to look for the aggregator or server code next.
root@17549eec6c89:/workspace/scubaduck# grep -n "avg" -R scubaduck | head
scubaduck/server.py:245: if agg == "avg" and column_types is not None
:
scubaduck/server.py:249: f"CAST(avg(epoch({_quote(col)}))
AS BIGINT)"
scubaduck/server.py:534: elif agg == "avg" or agg in {"min", "max"}:
root@17549eec6c89:/workspace/scubaduck# sed -n '200,260p' scubaduck/server.py
return qcol
def build_query(params: QueryParams, column_types: Dict[str, str] | None = None)
-> str:
select_parts: list[str] = []
group_cols = params.group_by[:]
selected_for_order = set(params.columns) | set(params.derived_columns.keys()
)
if params.graph_type == "timeseries":
sec = _granularity_seconds(params.granularity, params.start, params.end)
x_axis = params.x_axis or params.time_column
if x_axis is None:
raise ValueError("x_axis required for timeseries")
xexpr = _time_expr(x_axis, column_types, params.time_unit)
if params.start:
bucket_expr = (
f"TIMESTAMP '{params.start}' + INTERVAL '{sec} second' * "
f"CAST(floor((epoch({xexpr}) - epoch(TIMESTAMP '{params.start}')
)/{sec}) AS BIGINT)"
)
else:
bucket_expr = (
f"TIMESTAMP 'epoch' + INTERVAL '{sec} second' * "
f"CAST(floor(epoch({xexpr})/{sec}) AS BIGINT)"
)
select_parts.append(f"{bucket_expr} AS bucket")
group_cols = ["bucket"] + group_cols
selected_for_order.add("bucket")
has_agg = bool(group_cols) or params.aggregate is not None
if has_agg:
select_cols = (
group_cols[1:] if params.graph_type == "timeseries" else group_cols
)
select_parts.extend(_quote(c) for c in select_cols)
agg = (params.aggregate or "count").lower()
selected_for_order.update(group_cols)
def agg_expr(col: str) -> str:
expr = _quote(col)
ctype = column_types.get(col, "").upper() if column_types else ""
if "BOOL" in ctype:
expr = f"CAST({_quote(col)} AS BIGINT)"
if agg.startswith("p"):
quant = float(agg[1:]) / 100
return f"quantile({expr}, {quant})"
if agg == "count distinct":
return f"count(DISTINCT {expr})"
if agg == "avg" and column_types is not None:
if "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype:
return (
"TIMESTAMP 'epoch' + INTERVAL '1 second' * "
f"CAST(avg(epoch({_quote(col)})) AS BIGINT)"
)
return f"{agg}({expr})"
if agg == "count":
select_parts.append("count(*) AS Count")
selected_for_order.add("Count")
else:
for col in params.columns:
if col in group_cols:
continue
select_parts.append(f"{agg_expr(col)} AS {_quote(col)}")
I need to check more lines to find the second piece of avg-related code.
root@17549eec6c89:/workspace/scubaduck# sed -n '260,560p' scubaduck/server.py
select_parts.append(f"{agg_expr(col)} AS {_quote(col)}")
selected_for_order.add(col)
if params.show_hits:
select_parts.insert(len(group_cols), "count(*) AS Hits")
selected_for_order.add("Hits")
else:
select_parts.extend(_quote(c) for c in params.columns)
selected_for_order.update(params.columns)
order_by = params.order_by if params.order_by in selected_for_order else Non
e
if has_agg and params.derived_columns:
inner_params = replace(
params,
derived_columns={},
order_by=None,
limit=None,
)
inner_sql = build_query(inner_params, column_types)
outer_select = ["t.*"] + [
f"{expr} AS {name}" for name, expr in params.derived_columns.items()
]
indented_inner = "\n".join(" " + line for line in inner_sql.splitline
s())
lines = [
f"SELECT {', '.join(outer_select)}",
"FROM (",
indented_inner,
") t",
]
if order_by:
lines.append(f"ORDER BY {_quote(order_by)} {params.order_dir}")
elif params.graph_type == "timeseries":
lines.append("ORDER BY bucket")
if params.limit is not None:
lines.append(f"LIMIT {params.limit}")
return "\n".join(lines)
for name, expr in params.derived_columns.items():
select_parts.append(f"{expr} AS {name}")
selected_for_order.add(name)
select_clause = ", ".join(select_parts) if select_parts else "*"
lines = [f"SELECT {select_clause}", f'FROM "{params.table}"']
where_parts: list[str] = []
if params.time_column:
time_expr = _time_expr(params.time_column, column_types, params.time_uni
t)
else:
time_expr = None
if time_expr and params.start:
where_parts.append(f"{time_expr} >= '{params.start}'")
if time_expr and params.end:
where_parts.append(f"{time_expr} <= '{params.end}'")
for f in params.filters:
op = f.op
if op in {"empty", "!empty"}:
val = "''"
else:
if f.value is None:
continue
if isinstance(f.value, list):
if not f.value:
continue
if op == "=":
qcol = _quote(f.column)
vals = " OR ".join(f"{qcol} = '{v}'" for v in f.value)
where_parts.append(f"({vals})")
continue
val = f"'{f.value}'" if isinstance(f.value, str) else str(f.value)
qcol = _quote(f.column)
if op == "contains":
where_parts.append(f"{qcol} ILIKE '%' || {val} || '%'")
elif op == "!contains":
where_parts.append(f"{qcol} NOT ILIKE '%' || {val} || '%'")
elif op == "empty":
where_parts.append(f"{qcol} = {val}")
elif op == "!empty":
where_parts.append(f"{qcol} != {val}")
else:
where_parts.append(f"{qcol} {op} {val}")
if where_parts:
lines.append("WHERE " + " AND ".join(where_parts))
if group_cols:
lines.append("GROUP BY " + ", ".join(_quote(c) for c in group_cols))
if order_by:
lines.append(f"ORDER BY {_quote(order_by)} {params.order_dir}")
elif params.graph_type == "timeseries":
lines.append("ORDER BY bucket")
if params.limit is not None:
lines.append(f"LIMIT {params.limit}")
return "\n".join(lines)
def create_app(db_file: str | Path | None = None) -> Flask:
app = Flask(__name__, static_folder="static")
if db_file is None:
env_db = os.environ.get("SCUBADUCK_DB")
if env_db:
db_file = env_db
if isinstance(db_file, str) and db_file.upper() == "TEST":
con = _create_test_database()
else:
db_path = Path(db_file or Path(__file__).with_name("sample.csv")).resolv
e()
con = _load_database(db_path)
tables = [r[0] for r in con.execute("SHOW TABLES").fetchall()]
if not tables:
raise ValueError("No tables found in database")
default_table = tables[0]
columns_cache: Dict[str, Dict[str, str]] = {}
def get_columns(table: str) -> Dict[str, str]:
if table not in columns_cache:
rows = con.execute(f'PRAGMA table_info("{table}")').fetchall()
if not rows:
raise ValueError(f"Unknown table: {table}")
columns_cache[table] = {r[1]: r[2] for r in rows}
return columns_cache[table]
sample_cache: Dict[Tuple[str, str, str], Tuple[List[str], float]] = {}
CACHE_TTL = 60.0
...
values = [r[0] for r in rows]
_cache_set(key, values)
return jsonify(values)
@app.route("/api/query", methods=["POST"])
def query() -> Any: # pyright: ignore[reportUnusedFunction]
payload = request.get_json(force=True)
try:
start = parse_time(payload.get("start"))
end = parse_time(payload.get("end"))
except Exception as exc:
return jsonify({"error": str(exc)}), 400
params = QueryParams(
start=start,
end=end,
order_by=payload.get("order_by"),
order_dir=payload.get("order_dir", "ASC"),
limit=payload.get("limit"),
columns=payload.get("columns", []),
derived_columns=payload.get("derived_columns", {}),
graph_type=payload.get("graph_type", "samples"),
group_by=payload.get("group_by", []),
aggregate=payload.get("aggregate"),
show_hits=payload.get("show_hits", False),
x_axis=payload.get("x_axis"),
granularity=payload.get("granularity", "Auto"),
fill=payload.get("fill", "0"),
table=payload.get("table", default_table),
time_column=payload.get("time_column", "timestamp"),
time_unit=payload.get("time_unit", "s"),
)
for f in payload.get("filters", []):
params.filters.append(Filter(f["column"], f["op"], f.get("value")))
if params.table not in tables:
return jsonify({"error": "Invalid table"}), 400
column_types = get_columns(params.table)
if params.time_column and params.time_column not in column_types:
return jsonify({"error": "Invalid time_column"}), 400
if params.time_unit not in {"s", "ms", "us", "ns"}:
return jsonify({"error": "Invalid time_unit"}), 400
if params.graph_type not in {"table", "timeseries"} and (
params.group_by or params.aggregate or params.show_hits
):
return (
jsonify(
{
"error": "group_by, aggregate and show_hits are only val
id for table or timeseries view"
}
),
400,
)
valid_cols = set(column_types.keys())
valid_cols.update(params.derived_columns.keys())
if params.graph_type == "timeseries":
if params.x_axis is None:
params.x_axis = params.time_column
if params.x_axis is None or params.x_axis not in valid_cols:
return jsonify({"error": "Invalid x_axis"}), 400
ctype = column_types.get(params.x_axis, "").upper()
is_time = any(t in ctype for t in ["TIMESTAMP", "DATE", "TIME"])
is_numeric = any(
t in ctype
for t in [
"INT",
"DECIMAL",
"REAL",
"DOUBLE",
"FLOAT",
"NUMERIC",
"HUGEINT",
]
)
if not (is_time or is_numeric):
return jsonify({"error": "x_axis must be a time column"}), 400
for col in params.columns:
if col not in valid_cols:
return jsonify({"error": f"Unknown column: {col}"}), 400
for col in params.group_by:
if col not in valid_cols:
return jsonify({"error": f"Unknown column: {col}"}), 400
if params.order_by and params.order_by not in valid_cols:
return jsonify({"error": f"Unknown column: {params.order_by}"}), 400
if params.group_by or params.graph_type == "timeseries":
agg = (params.aggregate or "count").lower()
if agg.startswith("p") or agg == "sum":
need_numeric = True
allow_time = False
elif agg == "avg" or agg in {"min", "max"}:
need_numeric = False
allow_time = True
else:
need_numeric = False
allow_time = False
if need_numeric or allow_time:
for c in params.columns:
if c in params.group_by or c == params.x_axis:
continue
if c not in column_types:
continue
ctype = column_types.get(c, "").upper()
is_numeric = any(
t in ctype
for t in [
"INT",
"DECIMAL",
"REAL",
"DOUBLE",
"FLOAT",
"NUMERIC",
"HUGEINT",
]
)
is_time = "TIMESTAMP" in ctype or "DATE" in ctype or "TIME"
in ctype
if need_numeric and not is_numeric:
root@17549eec6c89:/workspace/scubaduck# sed -n '560,660p' scubaduck/server.py
if need_numeric and not is_numeric:
return (
jsonify(
{
"error": f"Aggregate {agg} cannot be applied
to column {c}",
}
),
400,
)
if allow_time and not (is_numeric or is_time):
return (
jsonify(
{
"error": f"Aggregate {agg} cannot be applied
to column {c}",
}
),
400,
)
if (params.start is None or params.end is None) and (
params.x_axis or params.time_column
):
axis = params.x_axis or params.time_column
assert axis is not None
row = cast(
tuple[datetime | None, datetime | None],
con.execute(
f'SELECT min({_quote(axis)}), max({_quote(axis)}) FROM "{par
ams.table}"'
).fetchall()[0],
)
mn, mx = row
divisor = {
"s": 1,
"ms": 1000,
"us": 1_000_000,
"ns": 1_000_000_000,
}.get(params.time_unit, 1)
if isinstance(mn, (int, float)):
try:
mn = datetime.fromtimestamp(int(mn) / divisor, tz=timezone.u
tc)
except Exception:
return (
jsonify(
{
"error": (
f"Invalid time value {mn} for column {axis}"
f" with time_unit {params.time_unit}"
)
}
),
400,
)
if isinstance(mx, (int, float)):
try:
mx = datetime.fromtimestamp(int(mx) / divisor, tz=timezone.u
tc)
except Exception:
return (
jsonify(
{
"error": (
f"Invalid time value {mx} for column {axis}"
f" with time_unit {params.time_unit}"
)
}
),
400,
)
if params.start is None and mn is not None:
params.start = (
mn.strftime("%Y-%m-%d %H:%M:%S") if not isinstance(mn, str)
else mn
)
if params.end is None and mx is not None:
params.end = (
mx.strftime("%Y-%m-%d %H:%M:%S") if not isinstance(mx, str)
else mx
)
bucket_size: int | None = None
if params.graph_type == "timeseries":
bucket_size = _granularity_seconds(
params.granularity,
params.start if isinstance(params.start, str) else None,
params.end if isinstance(params.end, str) else None,
)
if (
params.limit is not None
and params.start is not None
and params.end is not None
):
try:
start_dt = dtparser.parse(params.start)
end_dt = dtparser.parse(params.end)
buckets = math.ceil(
(end_dt - start_dt).total_seconds() / bucket_size
)
if buckets > 1:
params.limit *= buckets
except Exception:
pass
sql = build_query(params, column_types)
try:
rows = con.execute(sql).fetchall()
I'm checking code near lines 245-250 in build_query for avg and time columns. The bug might be related to Bool columns being incorrectly handled in an aggregate function as avg. I'll track down code for validating bool column types and see if it's cast to 0/1.
root@17549eec6c89:/workspace/scubaduck# grep -n "BOOL" -n scubaduck/server.py
85: "CREATE TABLE events (id INTEGER PRIMARY KEY, ts INTEGER, val REAL, n
ame TEXT, flag BOOLEAN)"
238: if "BOOL" in ctype:
I’ll take a look at the area near line 230 for more details.
root@17549eec6c89:/workspace/scubaduck# sed -n '230,250p' scubaduck/server.py
)
select_parts.extend(_quote(c) for c in select_cols)
agg = (params.aggregate or "count").lower()
selected_for_order.update(group_cols)
def agg_expr(col: str) -> str:
expr = _quote(col)
ctype = column_types.get(col, "").upper() if column_types else ""
if "BOOL" in ctype:
expr = f"CAST({_quote(col)} AS BIGINT)"
if agg.startswith("p"):
quant = float(agg[1:]) / 100
return f"quantile({expr}, {quant})"
if agg == "count distinct":
return f"count(DISTINCT {expr})"
if agg == "avg" and column_types is not None:
if "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype:
return (
"TIMESTAMP 'epoch' + INTERVAL '1 second' * "
f"CAST(avg(epoch({_quote(col)})) AS BIGINT)"
)
It seems the issue comes from the validation step, where booleans aren't treated as numeric. I'll adjust the checks to treat bool as numeric for aggregates. Let's take a closer look at lines 520-555 in server.py.
root@17549eec6c89:/workspace/scubaduck# sed -n '520,560p' scubaduck/server.py
for col in params.columns:
if col not in valid_cols:
return jsonify({"error": f"Unknown column: {col}"}), 400
for col in params.group_by:
if col not in valid_cols:
return jsonify({"error": f"Unknown column: {col}"}), 400
if params.order_by and params.order_by not in valid_cols:
return jsonify({"error": f"Unknown column: {params.order_by}"}), 400
if params.group_by or params.graph_type == "timeseries":
agg = (params.aggregate or "count").lower()
if agg.startswith("p") or agg == "sum":
need_numeric = True
allow_time = False
elif agg == "avg" or agg in {"min", "max"}:
need_numeric = False
allow_time = True
else:
need_numeric = False
allow_time = False
if need_numeric or allow_time:
for c in params.columns:
if c in params.group_by or c == params.x_axis:
continue
if c not in column_types:
continue
ctype = column_types.get(c, "").upper()
is_numeric = any(
t in ctype
for t in [
"INT",
"DECIMAL",
"REAL",
"DOUBLE",
"FLOAT",
"NUMERIC",
"HUGEINT",
]
)
is_time = "TIMESTAMP" in ctype or "DATE" in ctype or "TIME"
in ctype
if need_numeric and not is_numeric:
root@17549eec6c89:/workspace/scubaduck# sed -n '560,620p' scubaduck/server.py
if need_numeric and not is_numeric:
return (
jsonify(
{
"error": f"Aggregate {agg} cannot be applied
to column {c}",
}
),
400,
)
if allow_time and not (is_numeric or is_time):
return (
jsonify(
{
"error": f"Aggregate {agg} cannot be applied
to column {c}",
}
),
400,
)
if (params.start is None or params.end is None) and (
params.x_axis or params.time_column
):
axis = params.x_axis or params.time_column
assert axis is not None
row = cast(
tuple[datetime | None, datetime | None],
con.execute(
f'SELECT min({_quote(axis)}), max({_quote(axis)}) FROM "{par
ams.table}"'
).fetchall()[0],
)
mn, mx = row
divisor = {
"s": 1,
"ms": 1000,
"us": 1_000_000,
"ns": 1_000_000_000,
}.get(params.time_unit, 1)
if isinstance(mn, (int, float)):
try:
mn = datetime.fromtimestamp(int(mn) / divisor, tz=timezone.u
tc)
except Exception:
return (
jsonify(
{
"error": (
f"Invalid time value {mn} for column {axis}"
f" with time_unit {params.time_unit}"
)
}
),
400,
)
if isinstance(mx, (int, float)):
try:
mx = datetime.fromtimestamp(int(mx) / divisor, tz=timezone.u
tc)
except Exception:
return (
jsonify(
{
"error": (
f"Invalid time value {mx} for column {axis}"
f" with time_unit {params.time_unit}"
The aggregator fails on booleans. I'll search for "flag" in tests or dataset.
root@17549eec6c89:/workspace/scubaduck# grep -n "flag" -R
grep: .venv/lib64/python3.12/site-packages/markupsafe/_speedups.cpython-312-x86_
64-linux-gnu.so: binary file matches
.venv/lib64/python3.12/site-packages/werkzeug/sansio/http.py:108: flags=re.AS
CII | re.VERBOSE,
.venv/lib64/python3.12/site-packages/werkzeug/http.py:402:_parameter_key_re = re
.compile(r"([\w!#$%&'*+\-.^`|~]+)=", flags=re.ASCII)
.venv/lib64/python3.12/site-packages/werkzeug/http.py:403:_parameter_token_value
_re = re.compile(r"[\w!#$%&'*+\-.^`|~]+", flags=re.ASCII)
.venv/lib64/python3.12/site-packages/duckdb/query_graph/__main__.py:126:def open
_utf8(fpath: str, flags: str) -> object:
.venv/lib64/python3.12/site-packages/duckdb/query_graph/__main__.py:127: retu
rn open(fpath, flags, encoding="utf8")
grep: .venv/lib64/python3.12/site-packages/duckdb/duckdb.cpython-312-x86_64-linu
x-gnu.so: binary file matches
.venv/lib64/python3.12/site-packages/jinja2/environment.py:268: #: have a loo
k at jinja2.sandbox. This flag alone controls the code
.venv/lib64/python3.12/site-packages/jinja2/runtime.py:712: # time autoes
cape flag.
.venv/lib64/python3.12/site-packages/jinja2/ext.py:795: The `newstyle_gett
ext` flag can be set to `True` to enable newstyle
.venv/lib64/python3.12/site-packages/jinja2/debug.py:129: code.co_fla
gs,
.venv/lib64/python3.12/site-packages/jinja2/filters.py:256:_attr_key_re = re.com
pile(r"[\s/>=]", flags=re.ASCII)
.venv/lib64/python3.12/site-packages/charset_normalizer-3.4.2.dist-info/METADATA
:158: flag with caution.
.venv/lib64/python3.12/site-packages/requests-2.32.3.dist-info/METADATA:104:fetc
h.fsck.badTimezone=ignore` flag to avoid an error about a bad commit (see
.venv/lib64/python3.12/site-packages/click/parser.py:46:# Sentinel value that in
dicates an option was passed as a flag without a
.venv/lib64/python3.12/site-packages/click/parser.py:47:# value but is not a fla
g option. Option.consume_value uses this to
.venv/lib64/python3.12/site-packages/click/parser.py:48:# prompt or use the flag
_value.
.venv/lib64/python3.12/site-packages/click/parser.py:49:_flag_needs_value = obje
ct()
.venv/lib64/python3.12/site-packages/click/parser.py:437: if option.o
bj._flag_needs_value:
.venv/lib64/python3.12/site-packages/click/parser.py:439: value =
_flag_needs_value
.venv/lib64/python3.12/site-packages/click/parser.py:453: option.
obj._flag_needs_value
.venv/lib64/python3.12/site-packages/click/parser.py:460: value =
_flag_needs_value
.venv/lib64/python3.12/site-packages/click/termui.py:263: Added the `color
` flag.
.venv/lib64/python3.12/site-packages/click/globals.py:55: """Internal helper
to get the default value of the color flag. If a
.venv/lib64/python3.12/site-packages/click/_winconsole.py:107: flags: int
= PyBUF_WRITABLE if writable else PyBUF_SIMPLE
.venv/lib64/python3.12/site-packages/click/_winconsole.py:108: PyObject_G
etBuffer(py_object(obj), byref(buf), flags)
.venv/lib64/python3.12/site-packages/click/decorators.py:396: kwargs.setdefau
lt("is_flag", True)
.venv/lib64/python3.12/site-packages/click/decorators.py:519: kwargs.setdefau
lt("is_flag", True)
.venv/lib64/python3.12/site-packages/click/decorators.py:545: kwargs.setdefau
lt("is_flag", True)
.venv/lib64/python3.12/site-packages/click/core.py:33:from .parser import _flag_
needs_value
.venv/lib64/python3.12/site-packages/click/core.py:207: :param resilient_pars
ing: if this flag is enabled then Click will
.venv/lib64/python3.12/site-packages/click/core.py:328: #: This flag indi
cates if a subcommand is going to be executed. A
.venv/lib64/python3.12/site-packages/click/core.py:896: #: the default for th
e :attr:`Context.allow_extra_args` flag.
.venv/lib64/python3.12/site-packages/click/core.py:899: #: the default for th
e :attr:`Context.allow_interspersed_args` flag.
.venv/lib64/python3.12/site-packages/click/core.py:902: #: the default for th
e :attr:`Context.ignore_unknown_options` flag.
.venv/lib64/python3.12/site-packages/click/core.py:1993:
argument. This is a list of flags or argument
.venv/lib64/python3.12/site-packages/click/core.py:2476: For single optio
n boolean flags, the default remains hidden if
.venv/lib64/python3.12/site-packages/click/core.py:2489: prompted for inp
ut only when the option was specified as a flag
.venv/lib64/python3.12/site-packages/click/core.py:2493: :param is_flag: forc
es this option to act as a flag. The default is
.venv/lib64/python3.12/site-packages/click/core.py:2495: :param flag_value: w
hich value should be used for this flag if it's
.venv/lib64/python3.12/site-packages/click/core.py:2502: :param count: this f
lag makes an option increment an integer.
.venv/lib64/python3.12/site-packages/click/core.py:2512: ``envvar`` used
with ``flag_value`` will always use the ``flag_value``,
.venv/lib64/python3.12/site-packages/click/core.py:2524: The default of a
single option boolean flag is not shown if the
.venv/lib64/python3.12/site-packages/click/core.py:2528: ``type`` is dete
cted from ``flag_value`` if given.
.venv/lib64/python3.12/site-packages/click/core.py:2541: is_flag: bool |
None = None,
.venv/lib64/python3.12/site-packages/click/core.py:2542: flag_value: t.An
y | None = None,
.venv/lib64/python3.12/site-packages/click/core.py:2587: # used as a flag
to indicate using prompt or flag_value.
.venv/lib64/python3.12/site-packages/click/core.py:2588: self._flag_needs
_value = self.prompt is not None and not self.prompt_required
.venv/lib64/python3.12/site-packages/click/core.py:2590: if is_flag is No
ne:
.venv/lib64/python3.12/site-packages/click/core.py:2591: if flag_valu
e is not None:
.venv/lib64/python3.12/site-packages/click/core.py:2592: # Implic
itly a flag because flag_value was set.
.venv/lib64/python3.12/site-packages/click/core.py:2593: is_flag
= True
.venv/lib64/python3.12/site-packages/click/core.py:2594: elif self._f
lag_needs_value:
.venv/lib64/python3.12/site-packages/click/core.py:2595: # Not a
flag, but when used as a flag it shows a prompt.
.venv/lib64/python3.12/site-packages/click/core.py:2596: is_flag
= False
.venv/lib64/python3.12/site-packages/click/core.py:2598: # Implic
itly a flag because flag options were given.
.venv/lib64/python3.12/site-packages/click/core.py:2599: is_flag
= bool(self.secondary_opts)
.venv/lib64/python3.12/site-packages/click/core.py:2600: elif is_flag is
False and not self._flag_needs_value:
.venv/lib64/python3.12/site-packages/click/core.py:2601: # Not a flag
, and prompt is not enabled, can be used as a
.venv/lib64/python3.12/site-packages/click/core.py:2602: # flag if fl
ag_value is set.
.venv/lib64/python3.12/site-packages/click/core.py:2603: self._flag_n
eeds_value = flag_value is not None
.venv/lib64/python3.12/site-packages/click/core.py:2607: if is_flag and d
...
and not self.is_bool_flag:
.venv/lib64/python3.12/site-packages/click/core.py:2921: retu
rn t.cast(Option, param).flag_value
.venv/lib64/python3.12/site-packages/click/core.py:2938: # If this is a p
rompt for a flag we need to handle this
.venv/lib64/python3.12/site-packages/click/core.py:2940: if self.is_bool_
flag:
.venv/lib64/python3.12/site-packages/click/core.py:2964: if self.is_f
lag and self.flag_value:
.venv/lib64/python3.12/site-packages/click/core.py:2965: return s
tr(self.flag_value)
.venv/lib64/python3.12/site-packages/click/core.py:3003: # given as a fla
g without a value. This is different from None
.venv/lib64/python3.12/site-packages/click/core.py:3004: # to distinguish
from the flag not being given at all.
.venv/lib64/python3.12/site-packages/click/core.py:3005: if value is _fla
g_needs_value:
.venv/lib64/python3.12/site-packages/click/core.py:3010: value =
self.flag_value
.venv/lib64/python3.12/site-packages/click/core.py:3016: and any(v is
_flag_needs_value for v in value)
.venv/lib64/python3.12/site-packages/click/core.py:3018: value = [sel
f.flag_value if v is _flag_needs_value else v for v in value]
.venv/lib64/python3.12/site-packages/click/shell_completion.py:235: safe_
name = re.sub(r"\W*", "", self.prog_name.replace("-", "_"), flags=re.ASCII)
.venv/lib64/python3.12/site-packages/click/shell_completion.py:524: if param.
is_flag or param.count:
.venv/lib64/python3.12/site-packages/click/_termui_impl.py:440: # them by def
ault we find the -R flag in the command line arguments.
.venv/lib64/python3.12/site-packages/click/_termui_impl.py:442: less_flag
s = f"{os.environ.get('LESS', '')}{' '.join(cmd_params)}"
.venv/lib64/python3.12/site-packages/click/_termui_impl.py:443: if not le
ss_flags:
.venv/lib64/python3.12/site-packages/click/_termui_impl.py:446: elif "r"
in less_flags or "R" in less_flags:
.venv/lib64/python3.12/site-packages/click/_compat.py:87: The forcing of read
able and writable flags are there because some tools
.venv/lib64/python3.12/site-packages/click/_compat.py:382: # atomic flag. Use
fsdecode to handle Path("-").
.venv/lib64/python3.12/site-packages/click/_compat.py:421: flags = os.O_RDWR
| os.O_CREAT | os.O_EXCL
.venv/lib64/python3.12/site-packages/click/_compat.py:424: flags |= getat
tr(os, "O_BINARY", 0)
.venv/lib64/python3.12/site-packages/click/_compat.py:432: fd = os.op
en(tmp_filename, flags, 0o666 if perm is None else perm)
.venv/lib64/python3.12/site-packages/click/types.py:722: The `lazy` flag cont
rols if the file should be opened immediately or upon
.venv/lib64/python3.12/site-packages/click/types.py:762: def resolve_lazy_fla
g(self, value: str | os.PathLike[str]) -> bool:
.venv/lib64/python3.12/site-packages/click/types.py:783: lazy = self.
resolve_lazy_flag(value)
.venv/lib64/python3.12/site-packages/click/types.py:1153:#: A boolean parameter.
This is the default for boolean flags. This can
.venv/lib64/python3.12/site-packages/click/formatting.py:53: :param preserve_
paragraphs: if this flag is set then the wrapping will
.venv/lib64/python3.12/site-packages/click/formatting.py:286: any_prefix_is_s
lash)`` where the second item in the tuple is a flag that
.venv/lib64/python3.12/site-packages/requests/utils.py:167:
"flag in the mode). This may lead to an incorrect "
.venv/lib64/python3.12/site-packages/requests/utils.py:503: charset_re = re.c
ompile(r'<meta.*?charset=["\']*(.+?)["\'>]', flags=re.I)
.venv/lib64/python3.12/site-packages/requests/utils.py:504: pragma_re = re.co
mpile(r'<meta.*?content=["\']*;?charset=(.+?)["\'>]', flags=re.I)
.venv/lib64/python3.12/site-packages/requests/auth.py:262: pat = re.c
ompile(r"digest ", flags=re.IGNORECASE)
.venv/lib64/python3.12/site-packages/greenlet/PyModule.cpp:164:mod_enable_option
al_cleanup(PyObject* UNUSED(module), PyObject* flag)
.venv/lib64/python3.12/site-packages/greenlet/PyModule.cpp:166: int is_true =
PyObject_IsTrue(flag);
.venv/lib64/python3.12/site-packages/greenlet/PyModule.cpp:212: .ml_flags=M
ETH_NOARGS,
.venv/lib64/python3.12/site-packages/greenlet/PyModule.cpp:218: .ml_flags=M
ETH_VARARGS,
.venv/lib64/python3.12/site-packages/greenlet/PyModule.cpp:224: .ml_flags=M
ETH_NOARGS,
.venv/lib64/python3.12/site-packages/greenlet/PyModule.cpp:230: .ml_flags=M
ETH_VARARGS,
.venv/lib64/python3.12/site-packages/greenlet/PyModule.cpp:236: .ml_flags=M
ETH_NOARGS,
.venv/lib64/python3.12/site-packages/greenlet/PyModule.cpp:242: .ml_flags=M
ETH_NOARGS,
.venv/lib64/python3.12/site-packages/greenlet/PyModule.cpp:248: .ml_flags=M
ETH_NOARGS,
.venv/lib64/python3.12/site-packages/greenlet/PyModule.cpp:254: .ml_flags=M
ETH_O,
.venv/lib64/python3.12/site-packages/greenlet/PyModule.cpp:261: .ml_flags=M
ETH_NOARGS,
.venv/lib64/python3.12/site-packages/greenlet/PyGreenletUnswitchable.cpp:132:
.tp_flags=G_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
.venv/lib64/python3.12/site-packages/greenlet/PyGreenlet.cpp:672: .ml_flags
=METH_VARARGS | METH_KEYWORDS,
.venv/lib64/python3.12/site-packages/greenlet/PyGreenlet.cpp:675: {.ml_name="
throw", .ml_meth=(PyCFunction)green_throw, .ml_flags=METH_VARARGS, .ml_doc=green
_throw_doc},
.venv/lib64/python3.12/site-packages/greenlet/PyGreenlet.cpp:676: {.ml_name="
__getstate__", .ml_meth=(PyCFunction)green_getstate, .ml_flags=METH_NOARGS, .ml_
doc=NULL},
.venv/lib64/python3.12/site-packages/greenlet/PyGreenlet.cpp:713: .tp_flags=G
_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
.venv/lib64/python3.12/site-packages/greenlet/greenlet_cpython_compat.hpp:92://
Define these flags like Cython does if we're on an old version.
.venv/lib64/python3.12/site-packages/greenlet/TPythonState.cpp:57: meaning
that its ``use_tracing`` flag is never updated. We don't
grep: .venv/lib64/python3.12/site-packages/greenlet/tests/_test_extension_cpp.cp
ython-312-x86_64-linux-gnu.so: binary file matches
grep: .venv/lib64/python3.12/site-packages/greenlet/_greenlet.cpython-312-x86_64
-linux-gnu.so: binary file matches
.venv/lib64/python3.12/site-packages/dateutil/parser/_parser.py:1067: may
erroneously trigger the AM/PM flag. Deal with that
.venv/lib64/python3.12/site-packages/dateutil/parser/_parser.py:1072: # I
f there's already an AM/PM flag, this one isn't one.
.venv/lib64/python3.12/site-packages/dateutil/parser/_parser.py:1081:
raise ValueError('No hour specified with AM or PM flag.')
.venv/lib64/python3.12/site-packages/charset_normalizer/cli/__main__.py:171:
help="Replace file without asking if you are sure, use this flag with cautio
n.",
.venv/lib64/python3.12/site-packages/charset_normalizer/api.py:87: "c
p_isolation is set. use this flag for debugging purpose. "
.venv/lib64/python3.12/site-packages/charset_normalizer/api.py:98: "c
p_exclusion is set. use this flag for debugging purpose. "
.venv/lib64/python3.12/site-packages/pyright/_utils.py:118: # This flag i
s set by the language server as the output must always be machine parseable
.venv/lib64/python3.12/site-packages/pyright/_utils.py:122: # If this fla
g is set then the output must be machine parseable
I’ll exclude the .venv folder from the search to avoid scanning unnecessary lines.
bash: .venv/bin/activate: No such file or directory
root@17549eec6c89:/workspace# grep -n "flag" -R --exclude-dir=.venv | head
scubaduck/.git/hooks/fsmonitor-watchman.sample:141: # return the fas
t "everything is dirty" flag to git and do the
scubaduck/scubaduck/server.py:85: "CREATE TABLE events (id INTEGER PRIMAR
Y KEY, ts INTEGER, val REAL, name TEXT, flag BOOLEAN)"
scubaduck/tests/test_server_db_types.py:129: conn.execute("CREATE TABLE event
s (timestamp TEXT, flag BOOLEAN)")
scubaduck/tests/test_server_db_types.py:143: "columns": ["flag"],
I'll check how boolean values are managed in test_server_db_types.py.
root@17549eec6c89:/workspace# cat tests/test_server_db_types.py | sed -n '1,200p
'
cat: tests/test_server_db_types.py: No such file or directory
I got sidetracked from the path. Need to switch back to the repo root.
root@17549eec6c89:/workspace# cd scubaduck
root@17549eec6c89:/workspace/scubaduck# ls
AGENTS.md codex_setup.sh scubaduck tests
README.md pyproject.toml stubs uv.lock
root@17549eec6c89:/workspace/scubaduck# ls tests
conftest.py test_server_time.py test_web_graph.py
test_multi_table_web.py test_server_timeseries.py test_web_table.py
test_server.py test_web.py test_web_timeseries.py
test_server_basic.py test_web_basics.py web_utils.py
test_server_db_types.py test_web_chips.py
test_server_errors.py test_web_columns.py
root@17549eec6c89:/workspace/scubaduck# sed -n '1,220p' tests/test_server_db_typ
es.py
from __future__ import annotations
import json
from pathlib import Path
import duckdb
import pytest
from scubaduck import server
def _make_payload() -> dict[str, object]:
return {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-02 00:00:00",
"order_by": "timestamp",
"order_dir": "ASC",
"limit": 10,
"columns": ["timestamp", "event", "value", "user"],
"filters": [],
}
def test_database_types(tmp_path: Path) -> None:
csv_file = tmp_path / "events.csv"
csv_file.write_text(Path("scubaduck/sample.csv").read_text())
sqlite_file = tmp_path / "events.sqlite"
import sqlite3
conn = sqlite3.connect(sqlite_file)
conn.execute(
"CREATE TABLE events (timestamp TEXT, event TEXT, value INTEGER, user TE
XT)"
)
with open(csv_file) as f:
next(f)
for line in f:
ts, ev, val, user = line.strip().split(",")
conn.execute(
"INSERT INTO events VALUES (?, ?, ?, ?)", (ts, ev, int(val), use
r)
)
conn.commit()
conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce
ssIssue]
duckdb_file = tmp_path / "events.duckdb"
con = duckdb.connect(duckdb_file)
con.execute(
f"CREATE TABLE events AS SELECT * FROM read_csv_auto('{csv_file.as_posix
()}')"
)
con.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcces
sIssue]
for db in (csv_file, sqlite_file, duckdb_file):
app = server.create_app(db)
client = app.test_client()
payload = _make_payload()
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/js
on"
)
rows = rv.get_json()["rows"]
assert len(rows) == 3
def test_sqlite_longvarchar(tmp_path: Path) -> None:
sqlite_file = tmp_path / "events.sqlite"
import sqlite3
conn = sqlite3.connect(sqlite_file)
conn.execute(
"CREATE TABLE events (timestamp TEXT, url LONGVARCHAR, title VARCHAR(10)
)"
)
conn.execute(
"INSERT INTO events VALUES ('2024-01-01 00:00:00', 'https://a.com', 'Hom
e')"
)
conn.commit()
conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce
ssIssue]
app = server.create_app(sqlite_file)
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-01 01:00:00",
"order_by": "timestamp",
"columns": ["timestamp", "url", "title"],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert data["rows"][0][1] == "https://a.com"
def test_sqlite_bigint(tmp_path: Path) -> None:
sqlite_file = tmp_path / "big.sqlite"
import sqlite3
conn = sqlite3.connect(sqlite_file)
conn.execute("CREATE TABLE events (timestamp TEXT, value INTEGER)")
big_value = 13385262862605259
conn.execute(
"INSERT INTO events VALUES ('2024-01-01 00:00:00', ?)",
(big_value,),
)
conn.commit()
conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce
ssIssue]
app = server.create_app(sqlite_file)
client = app.test_client()
payload = {
"table": "events",
"order_by": "timestamp",
"columns": ["timestamp", "value"],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert data["rows"][0][1] == big_value
def test_sqlite_boolean_aggregation(tmp_path: Path) -> None:
sqlite_file = tmp_path / "bool.sqlite"
import sqlite3
conn = sqlite3.connect(sqlite_file)
conn.execute("CREATE TABLE events (timestamp TEXT, flag BOOLEAN)")
conn.execute("INSERT INTO events VALUES ('2024-01-01 00:00:00', 1)")
conn.execute("INSERT INTO events VALUES ('2024-01-01 00:30:00', 0)")
conn.commit()
conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce
ssIssue]
app = server.create_app(sqlite_file)
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-02 00:00:00",
"graph_type": "table",
"aggregate": "Avg",
"columns": ["flag"],
"show_hits": True,
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert data["rows"][0][0] == 2
assert data["rows"][0][1] == 0.5
def test_envvar_db(monkeypatch: pytest.MonkeyPatch, tmp_path: Path) -> None:
csv_file = tmp_path / "custom.csv"
csv_file.write_text("timestamp,event,value,user\n2024-01-01 00:00:00,login,5
,bob\n")
monkeypatch.setenv("SCUBADUCK_DB", str(csv_file))
app = server.create_app()
client = app.test_client()
payload = _make_payload()
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
rows = rv.get_json()["rows"]
assert len(rows) == 1
def test_envvar_db_missing(monkeypatch: pytest.MonkeyPatch, tmp_path: Path) -> N
one:
missing = tmp_path / "missing.sqlite"
monkeypatch.setenv("SCUBADUCK_DB", str(missing))
with pytest.raises(FileNotFoundError):
server.create_app()
The test named test_sqlite_boolean_aggregation
covers averaging of boolean values, but doesn't use group_by
. I'll review other tests to see if any cover boolean aggregation with group_by
.
root@17549eec6c89:/workspace/scubaduck# grep -n "boolean" -R tests | head
tests/test_server_db_types.py:124:def test_sqlite_boolean_aggregation(tmp_path:
Path) -> None:
The issue involves group_by
. I'll try replicating with id
and the bool column.
root@17549eec6c89:/workspace/scubaduck# grep -n "_create_test_database" -n scuba
duck/server.py
81:def _create_test_database() -> duckdb.DuckDBPyConnection:
359: con = _create_test_database()
root@17549eec6c89:/workspace/scubaduck# sed -n '70,110p' scubaduck/server.py
for r in con.execute(
"SELECT name FROM sqlite_master WHERE type='table'"
).fetchall()
]
for t in tables:
con.execute(f'CREATE VIEW "{t}" AS SELECT * FROM db."{t}"')
else:
con = duckdb.connect(path)
return con
def _create_test_database() -> duckdb.DuckDBPyConnection:
"""Return a DuckDB connection with a small multi-table dataset."""
con = duckdb.connect()
con.execute(
"CREATE TABLE events (id INTEGER PRIMARY KEY, ts INTEGER, val REAL, name
TEXT, flag BOOLEAN)"
)
con.execute("INSERT INTO events VALUES (1, 1704067200, 1.5, 'alice', 1)")
con.execute("INSERT INTO events VALUES (2, 1704070800, 2.0, 'bob', 0)")
con.execute('CREATE TABLE extra (ts INTEGER, "desc" TEXT, num INTEGER)')
con.execute("INSERT INTO extra VALUES (1704067200, 'x', 1)")
con.execute("INSERT INTO extra VALUES (1704070800, 'y', 2)")
return con
_REL_RE = re.compile(
r"([+-]?\d+(?:\.\d*)?)\s*(hour|hours|day|days|week|weeks|fortnight|fortnight
s)",
re.IGNORECASE,
)
def parse_time(val: str | None) -> str | None:
"""Parse an absolute or relative time string into ``YYYY-MM-DD HH:MM:SS``.""
"
if val is None or val == "":
return None
s = val.strip()
if s.lower() == "now":
dt = datetime.now(timezone.utc)
return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S")
m = _REL_RE.fullmatch(s)
I see the events table has 'flag BOOLEAN'. I'll check tests/test_server.py for API usage.
root@17549eec6c89:/workspace/scubaduck# grep -n "TEST" -n tests/test_server.py
I should check if any tests are using the 'TEST' dataset.
root@17549eec6c89:/workspace/scubaduck# grep -n "TEST" -R tests | head
tests/test_server_timeseries.py:253: app = server.create_app("TEST")
tests/test_multi_table_web.py:14: app = create_app("TEST")
I'll review the lines around 253 in test_server_timeseries.py to explore the other tests.
root@17549eec6c89:/workspace/scubaduck# sed -n '240,300p' tests/test_server_time
series.py
"derived_columns": {"derived_1": "value * 2"},
"aggregate": "Avg",
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
rows = data["rows"]
assert all(r[2] == r[1] * 2 for r in rows)
def test_reserved_word_column() -> None:
app = server.create_app("TEST")
client = app.test_client()
payload = {
"table": "extra",
"columns": ["ts", "desc"],
"order_by": "ts",
"time_column": "",
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert len(data["rows"]) == 2
assert data["rows"][0][1] == "x"
I’ll continue looking around line 253 for more context.
root@17549eec6c89:/workspace/scubaduck# grep -n "group_by" -n tests/test_server_
timeseries.py | head -n 20
9:def test_group_by_table() -> None:
20: "group_by": ["user"],
44: "group_by": ["user"],
70: "group_by": ["user"],
141: "group_by": ["user"],
root@17549eec6c89:/workspace/scubaduck# sed -n '1,120p' tests/test_server_timese
ries.py
from __future__ import annotations
import json
from typing import Any, cast
from scubaduck import server
def test_group_by_table() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"graph_type": "table",
"order_by": "user",
"limit": 10,
"columns": ["value"],
"group_by": ["user"],
"aggregate": "Sum",
"show_hits": True,
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
rows = rv.get_json()["rows"]
assert rows[0][0] == "alice"
assert rows[0][1] == 2
assert rows[0][2] == 40
def test_table_avg_with_timestamp() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"graph_type": "table",
"order_by": "user",
"limit": 100,
"columns": ["user", "timestamp", "value"],
"group_by": ["user"],
"aggregate": "Avg",
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert "error" not in data
rows = data["rows"]
assert rows[0][0] == "alice"
from dateutil import parser
ts = parser.parse(rows[0][1]).replace(tzinfo=None)
assert ts == parser.parse("2024-01-01 12:00:00")
def test_timeseries_basic() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"graph_type": "timeseries",
"limit": 100,
"group_by": ["user"],
"aggregate": "Count",
"columns": ["value"],
"x_axis": "timestamp",
"granularity": "1 day",
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert len(data["rows"]) == 4
def test_timeseries_orders_by_xaxis() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"graph_type": "timeseries",
"limit": 100,
"columns": ["value"],
"x_axis": "timestamp",
"granularity": "1 day",
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
rows = data["rows"]
from dateutil import parser
timestamps = [parser.parse(r[0]).replace(tzinfo=None) for r in rows]
assert timestamps == sorted(timestamps)
def test_timeseries_count_no_columns() -> None:
app = server.app
client = app.test_client()
payload: dict[str, Any] = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"graph_type": "timeseries",
"granularity": "1 day",
"columns": [],
}
rv = client.post(
I'm scanning for mentions of group_by
and related details.
root@17549eec6c89:/workspace/scubaduck# sed -n '120,200p' tests/test_server_time
series.py
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
rows = data["rows"]
assert len(rows) == 2
assert rows[0][1] == 2
assert rows[1][1] == 2
def test_timeseries_limit_applies_to_series() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"graph_type": "timeseries",
"limit": 1,
"order_by": "user",
"group_by": ["user"],
"aggregate": "Count",
"columns": ["value"],
"x_axis": "timestamp",
"granularity": "1 day",
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert len(data["rows"]) == 2
assert all(r[1] == "alice" for r in data["rows"])
def test_timeseries_auto_and_fine_buckets() -> None:
app = server.app
client = app.test_client()
def run(gran: str) -> None:
payload = {
"start": "2024-01-01 00:00:00",
"end": "2024-01-02 03:00:00",
"graph_type": "timeseries",
"columns": ["value"],
"x_axis": "timestamp",
"granularity": gran,
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/js
on"
)
data = rv.get_json()
assert rv.status_code == 200
from dateutil import parser
start = parser.parse(cast(str, payload["start"])).replace(tzinfo=None)
buckets = [
parser.parse(cast(str, r[0])).replace(tzinfo=None) for r in data["ro
ws"]
]
assert buckets[0] == start
if len(buckets) > 1:
step = (buckets[1] - buckets[0]).total_seconds()
assert step % data["bucket_size"] == 0
assert any(r[1] != 0 for r in data["rows"])
run("Auto")
run("Fine")
def test_timeseries_string_column_error() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"graph_type": "timeseries",
"limit": 7,
"columns": ["timestamp", "event", "value", "user"],
"x_axis": "timestamp",
I'm checking near the bottom for timeseries, deciding if I need to group by.
root@17549eec6c89:/workspace/scubaduck# sed -n '200,260p' tests/test_server_time
series.py
"x_axis": "timestamp",
"granularity": "1 hour",
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
assert rv.status_code == 200
def test_derived_column_basic() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"limit": 10,
"columns": ["timestamp"],
"derived_columns": {"val2": "value * 2"},
"filters": [],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert data["rows"][0][1] == 20
def test_timeseries_derived_column() -> None:
app = server.app
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"graph_type": "timeseries",
"granularity": "1 hour",
"limit": 7,
"columns": ["value"],
"derived_columns": {"derived_1": "value * 2"},
"aggregate": "Avg",
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
rows = data["rows"]
assert all(r[2] == r[1] * 2 for r in rows)
def test_reserved_word_column() -> None:
app = server.create_app("TEST")
client = app.test_client()
payload = {
"table": "extra",
"columns": ["ts", "desc"],
"order_by": "ts",
"time_column": "",
}
It looks like the tests don't cover boolean group by. I'll check test_server.py next.
root@17549eec6c89:/workspace/scubaduck# grep -n "boolean" -R tests | head
tests/test_server_db_types.py:124:def test_sqlite_boolean_aggregation(tmp_path:
Path) -> None:
Time to explore the test files and see how the bool aggregator fails with group_by.
root@17549eec6c89:/workspace/scubaduck# grep -n "Aggregate" tests -n | head
grep: tests: Is a directory
I mistakenly wrote "tests -n," but it's actually grep -n Aggregate -R tests | head
.
root@17549eec6c89:/workspace/scubaduck# grep -n "Aggregate" -R tests | head
tests/test_web_timeseries.py:378: assert page.is_visible("#legend .drill-link
s a:text('Aggregate')")
I'll recreate the bug to confirm, then proceed with implementing the fix.
root@17549eec6c89:/workspace/scubaduck# source .venv/bin/activate
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
I’m going to run the Python script now to replicate the task.
(scubaduck) root@17549eec6c89:/workspace/scubaduck# python - <<'PY'
> from scubaduck import server
> import json
>
> app = server.create_app('TEST')
> client = app.test_client()
>
> payload = {
> 'table': 'events',
> 'start': '-100000 day',
> 'end': 'now',
> 'graph_type': 'table',
> 'aggregate': 'Avg',
> 'group_by': ['id'],
> 'columns': ['flag'],
> }
> rv = client.post('/api/query', data=json.dumps(payload), content_type='applica
tion/json')
> print('status', rv.status_code)
> print(rv.get_json())
> PY
status 400
{'error': 'Invalid time_column'}
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
The test fails due to using an incorrect "timestamp" column instead of "ts." I'll specify "ts."
(scubaduck) root@17549eec6c89:/workspace/scubaduck# python - <<'PY'
> from scubaduck import server
> import json
>
> app = server.create_app('TEST')
> client = app.test_client()
>
> payload = {
> 'table': 'events',
> 'start': '-100000 day',
> 'end': 'now',
> 'graph_type': 'table',
> 'time_column': 'ts',
> 'aggregate': 'Avg',
> 'group_by': ['id'],
> 'columns': ['flag'],
> }
> rv = client.post('/api/query', data=json.dumps(payload), content_type='applica
tion/json')
> print('status', rv.status_code)
> print(rv.get_json())
> PY
status 400
{'error': 'Aggregate avg cannot be applied to column flag'}
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
I’ll patch the is_numeric
check to treat booleans as numeric by adding "BOOL".
I'll create a test to check if boolean aggregation with group_by
works correctly.
(scubaduck) root@17549eec6c89:/workspace/scubaduck# grep -n "create_app" -n scub
aduck/server.py
352:def create_app(db_file: str | Path | None = None) -> Flask:
681:app = create_app()
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
I'll scroll to the bottom to see what’s there.
(scubaduck) root@17549eec6c89:/workspace/scubaduck# sed -n '660,710p' scubaduck/
server.py
rows = con.execute(sql).fetchall()
except Exception as exc:
tb = traceback.format_exc()
print(f"Query failed:\n{sql}\n{tb}")
return (
jsonify({"sql": sql, "error": str(exc), "traceback": tb}),
400,
)
result: Dict[str, Any] = {"sql": sql, "rows": rows}
if params.start is not None:
result["start"] = str(params.start)
if params.end is not None:
result["end"] = str(params.end)
if bucket_size is not None:
result["bucket_size"] = bucket_size
return jsonify(result)
return app
app = create_app()
if __name__ == "__main__":
app.run(debug=True)
(scubaduck) root@17549eec6c89:/workspace/scubaduck# sed -n '680,710p' scubaduck/
server.py
app = create_app()
if __name__ == "__main__":
app.run(debug=True)
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
I’ll check tests/test_server.py to investigate how sample.csv is used in the tests.
(scubaduck) root@17549eec6c89:/workspace/scubaduck# head tests/test_server.py
"""Legacy test module.
Tests have been split into multiple files:
- test_server_basic.py
- test_server_db_types.py
- test_server_time.py
- test_server_errors.py
- test_server_timeseries.py
"""
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
I'll review tests/test_server_basic to verify the dataset.
(scubaduck) root@17549eec6c89:/workspace/scubaduck# grep -n "create_app(" -R tes
ts | head
tests/test_server_time.py:15: app = server.create_app(csv_file)
tests/test_server_time.py:36: app = server.create_app(csv_file)
tests/test_server_time.py:58: app = server.create_app(csv_file)
tests/test_server_time.py:84: app = server.create_app(csv_file)
tests/test_server_time.py:114: app = server.create_app(sqlite_file)
tests/test_server_timeseries.py:253: app = server.create_app("TEST")
tests/test_multi_table_web.py:14: app = create_app("TEST")
tests/test_server_db_types.py:54: app = server.create_app(db)
tests/test_server_db_types.py:78: app = server.create_app(sqlite_file)
tests/test_server_db_types.py:109: app = server.create_app(sqlite_file)
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
The bug relates to treating bool as numeric—adding tests to test_server_db_types.py
.
I need to check the ORDER BY
in build_query
to ensure correct sorting.
(scubaduck) root@17549eec6c89:/workspace/scubaduck# grep -n "ORDER BY" -n scubad
uck/server.py | head -n 20
290: lines.append(f"ORDER BY {_quote(order_by)} {params.order_dir}")
292: lines.append("ORDER BY bucket")
344: lines.append(f"ORDER BY {_quote(order_by)} {params.order_dir}")
346: lines.append("ORDER BY bucket")
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
I'll check lines 276–351 to verify the details.
(scubaduck) root@17549eec6c89:/workspace/scubaduck# sed -n '268,350p' scubaduck/
server.py
order_by = params.order_by if params.order_by in selected_for_order else Non
e
if has_agg and params.derived_columns:
inner_params = replace(
params,
derived_columns={},
order_by=None,
limit=None,
)
inner_sql = build_query(inner_params, column_types)
outer_select = ["t.*"] + [
f"{expr} AS {name}" for name, expr in params.derived_columns.items()
]
indented_inner = "\n".join(" " + line for line in inner_sql.splitline
s())
lines = [
f"SELECT {', '.join(outer_select)}",
"FROM (",
indented_inner,
") t",
]
if order_by:
lines.append(f"ORDER BY {_quote(order_by)} {params.order_dir}")
elif params.graph_type == "timeseries":
lines.append("ORDER BY bucket")
if params.limit is not None:
lines.append(f"LIMIT {params.limit}")
return "\n".join(lines)
for name, expr in params.derived_columns.items():
select_parts.append(f"{expr} AS {name}")
selected_for_order.add(name)
select_clause = ", ".join(select_parts) if select_parts else "*"
lines = [f"SELECT {select_clause}", f'FROM "{params.table}"']
where_parts: list[str] = []
if params.time_column:
time_expr = _time_expr(params.time_column, column_types, params.time_uni
t)
else:
time_expr = None
if time_expr and params.start:
where_parts.append(f"{time_expr} >= '{params.start}'")
if time_expr and params.end:
where_parts.append(f"{time_expr} <= '{params.end}'")
for f in params.filters:
op = f.op
if op in {"empty", "!empty"}:
val = "''"
else:
if f.value is None:
continue
if isinstance(f.value, list):
if not f.value:
continue
if op == "=":
qcol = _quote(f.column)
vals = " OR ".join(f"{qcol} = '{v}'" for v in f.value)
where_parts.append(f"({vals})")
continue
val = f"'{f.value}'" if isinstance(f.value, str) else str(f.value)
qcol = _quote(f.column)
if op == "contains":
where_parts.append(f"{qcol} ILIKE '%' || {val} || '%'")
elif op == "!contains":
where_parts.append(f"{qcol} NOT ILIKE '%' || {val} || '%'")
elif op == "empty":
where_parts.append(f"{qcol} = {val}")
elif op == "!empty":
where_parts.append(f"{qcol} != {val}")
else:
where_parts.append(f"{qcol} {op} {val}")
if where_parts:
lines.append("WHERE " + " AND ".join(where_parts))
if group_cols:
lines.append("GROUP BY " + ", ".join(_quote(c) for c in group_cols))
if order_by:
lines.append(f"ORDER BY {_quote(order_by)} {params.order_dir}")
elif params.graph_type == "timeseries":
lines.append("ORDER BY bucket")
if params.limit is not None:
lines.append(f"LIMIT {params.limit}")
return "\n".join(lines)
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
I’m thinking about where to add the test, maybe in test_server_timeseries.py
.
(scubaduck) root@17549eec6c89:/workspace/scubaduck# sed -n '232,272p' tests/test
_server_timeseries.py
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-03 00:00:00",
"graph_type": "timeseries",
"granularity": "1 hour",
"limit": 7,
"columns": ["value"],
"derived_columns": {"derived_1": "value * 2"},
"aggregate": "Avg",
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
rows = data["rows"]
assert all(r[2] == r[1] * 2 for r in rows)
def test_reserved_word_column() -> None:
app = server.create_app("TEST")
client = app.test_client()
payload = {
"table": "extra",
"columns": ["ts", "desc"],
"order_by": "ts",
"time_column": "",
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert len(data["rows"]) == 2
assert data["rows"][0][1] == "x"
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
I'll add the new test to tests/test_server_timeseries.py or test_server_db_types.py, checking both.
(scubaduck) root@17549eec6c89:/workspace/scubaduck# tail -n 20 tests/test_server
_timeseries.py
rows = data["rows"]
assert all(r[2] == r[1] * 2 for r in rows)
def test_reserved_word_column() -> None:
app = server.create_app("TEST")
client = app.test_client()
payload = {
"table": "extra",
"columns": ["ts", "desc"],
"order_by": "ts",
"time_column": "",
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert len(data["rows"]) == 2
assert data["rows"][0][1] == "x"
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
I'm thinking of placing the test in test_server_db_types.py, but need to check its end.
(scubaduck) root@17549eec6c89:/workspace/scubaduck# tail -n 20 tests/test_server
_db_types.py
def test_envvar_db(monkeypatch: pytest.MonkeyPatch, tmp_path: Path) -> None:
csv_file = tmp_path / "custom.csv"
csv_file.write_text("timestamp,event,value,user\n2024-01-01 00:00:00,login,5
,bob\n")
monkeypatch.setenv("SCUBADUCK_DB", str(csv_file))
app = server.create_app()
client = app.test_client()
payload = _make_payload()
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
rows = rv.get_json()["rows"]
assert len(rows) == 1
def test_envvar_db_missing(monkeypatch: pytest.MonkeyPatch, tmp_path: Path) -> N
one:
missing = tmp_path / "missing.sqlite"
monkeypatch.setenv("SCUBADUCK_DB", str(missing))
with pytest.raises(FileNotFoundError):
server.create_app()
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
I recall seeing _make_payload at the top of tests/test_server_db_types.py; let’s scroll more.
(scubaduck) root@17549eec6c89:/workspace/scubaduck# sed -n '90,160p' tests/test_
server_db_types.py
data = rv.get_json()
assert rv.status_code == 200
assert data["rows"][0][1] == "https://a.com"
def test_sqlite_bigint(tmp_path: Path) -> None:
sqlite_file = tmp_path / "big.sqlite"
import sqlite3
conn = sqlite3.connect(sqlite_file)
conn.execute("CREATE TABLE events (timestamp TEXT, value INTEGER)")
big_value = 13385262862605259
conn.execute(
"INSERT INTO events VALUES ('2024-01-01 00:00:00', ?)",
(big_value,),
)
conn.commit()
conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce
ssIssue]
app = server.create_app(sqlite_file)
client = app.test_client()
payload = {
"table": "events",
"order_by": "timestamp",
"columns": ["timestamp", "value"],
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert data["rows"][0][1] == big_value
def test_sqlite_boolean_aggregation(tmp_path: Path) -> None:
sqlite_file = tmp_path / "bool.sqlite"
import sqlite3
conn = sqlite3.connect(sqlite_file)
conn.execute("CREATE TABLE events (timestamp TEXT, flag BOOLEAN)")
conn.execute("INSERT INTO events VALUES ('2024-01-01 00:00:00', 1)")
conn.execute("INSERT INTO events VALUES ('2024-01-01 00:30:00', 0)")
conn.commit()
conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce
ssIssue]
app = server.create_app(sqlite_file)
client = app.test_client()
payload = {
"table": "events",
"start": "2024-01-01 00:00:00",
"end": "2024-01-02 00:00:00",
"graph_type": "table",
"aggregate": "Avg",
"columns": ["flag"],
"show_hits": True,
}
rv = client.post(
"/api/query", data=json.dumps(payload), content_type="application/json"
)
data = rv.get_json()
assert rv.status_code == 200
assert data["rows"][0][0] == 2
assert data["rows"][0][1] == 0.5
def test_envvar_db(monkeypatch: pytest.MonkeyPatch, tmp_path: Path) -> None:
csv_file = tmp_path / "custom.csv"
csv_file.write_text("timestamp,event,value,user\n2024-01-01 00:00:00,login,5
,bob\n")
monkeypatch.setenv("SCUBADUCK_DB", str(csv_file))
app = server.create_app()
client = app.test_client()
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
I’ll create the test_sqlite_boolean_group_by
to check avg aggregation by ID, and sort results.
(scubaduck) root@17549eec6c89:/workspace/scubaduck# apply_patch<<'PATCH'
> *** Begin Patch
> *** Update File: scubaduck/server.py
> @@
> - is_numeric = any(
> - t in ctype
> - for t in [
> - "INT",
> - "DECIMAL",
> - "REAL",
> - "DOUBLE",
> - "FLOAT",
> - "NUMERIC",
> - "HUGEINT",
> - ]
> - )
> + is_numeric = "BOOL" in ctype or any(
> + t in ctype
> + for t in [
> + "INT",
> + "DECIMAL",
> + "REAL",
> + "DOUBLE",
> + "FLOAT",
> + "NUMERIC",
> + "HUGEINT",
> + ]
> + )
> *** End Patch
> PATCH
Success. Updated the following files:
M scubaduck/server.py
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
Time to add a test for the changes I've made!
(scubaduck) root@17549eec6c89:/workspace/scubaduck# apply_patch<<'PATCH'
> *** Begin Patch
> *** Update File: tests/test_server_db_types.py
> @@
> def test_sqlite_boolean_aggregation(tmp_path: Path) -> None:
> @@
> assert data["rows"][0][1] == 0.5
> +
> +
> +def test_sqlite_boolean_group_by(tmp_path: Path) -> None:
> + sqlite_file = tmp_path / "bool.sqlite"
> + import sqlite3
> +
> + conn = sqlite3.connect(sqlite_file)
> + conn.execute("CREATE TABLE events (id INTEGER, ts TEXT, flag BOOLEAN)")
> + conn.execute("INSERT INTO events VALUES (1, '2024-01-01 00:00:00', 1)")
> + conn.execute("INSERT INTO events VALUES (1, '2024-01-01 00:30:00', 0)")
> + conn.execute("INSERT INTO events VALUES (2, '2024-01-01 01:00:00', 1)")
> + conn.commit()
> + conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeA
ccessIssue]
> +
> + app = server.create_app(sqlite_file)
> + client = app.test_client()
> + payload = {
> + "table": "events",
> + "start": "2024-01-01 00:00:00",
> + "end": "2024-01-02 00:00:00",
> + "graph_type": "table",
> + "time_column": "ts",
> + "aggregate": "Avg",
> + "group_by": ["id"],
> + "columns": ["flag"],
> + }
> + rv = client.post(
> + "/api/query", data=json.dumps(payload), content_type="application/jso
n"
> + )
> + data = rv.get_json()
> + assert rv.status_code == 200
> + rows = sorted(data["rows"]) # order can vary
> + assert rows == [[1, 0.5], [2, 1.0]]
> *** End Patch
> PATCH
Success. Updated the following files:
M tests/test_server_db_types.py
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
I'll run ruff format, ruff check, pyright, and the tests now.
(scubaduck) root@17549eec6c89:/workspace/scubaduck# ruff format scubaduck/server
.py tests/test_server_db_types.py
2 files left unchanged
(scubaduck) root@17549eec6c89:/workspace/scubaduck# ruff check scubaduck/server.
py tests/test_server_db_types.py
All checks passed!
(scubaduck) root@17549eec6c89:/workspace/scubaduck# pyright scubaduck/server.py
tests/test_server_db_types.py > /tmp/pyright.log && tail -n 20 /tmp/pyright.log
0 errors, 0 warnings, 0 informations
(scubaduck) root@17549eec6c89:/workspace/scubaduck# cat /tmp/pyright.log
0 errors, 0 warnings, 0 informations
(scubaduck) root@17549eec6c89:/workspace/scubaduck# pytest -q > /tmp/pytest.log
&& tail -n 20 /tmp/pytest.log
bringing up nodes...
bringing up nodes...
........................................................................ [ 64%]
........................................ [100%]
112 passed in 18.51s
(scubaduck) root@17549eec6c89:/workspace/scubaduck# tail -n 20 /tmp/pytest.log
bringing up nodes...
bringing up nodes...
........................................................................ [ 64%]
........................................ [100%]
112 passed in 18.51s
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
I'm confirming the current git status after all tests passed.
(scubaduck) root@17549eec6c89:/workspace/scubaduck# git status --short
M scubaduck/server.py
M tests/test_server_db_types.py
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
I'll check around the modifications in scubaduck/server.py to add citations.
540 if need_numeric or allow_time:
541 for c in params.columns:
542 if c in params.group_by or c == params.x_axis:
543 continue
544 if c not in column_types:
545 continue
546 ctype = column_types.get(c, "").upper()
547 is_numeric = "BOOL" in ctype or any(
548 t in ctype
549 for t in [
550 "INT",
551 "DECIMAL",
552 "REAL",
553 "DOUBLE",
554 "FLOAT",
555 "NUMERIC",
556 "HUGEINT",
557 ]
558 )
559 is_time = "TIMESTAMP" in ctype or "DATE" in ctype or
"TIME" in ctype
560 if need_numeric and not is_numeric:
561 return (
562 jsonify(
563 {
564 "error": f"Aggregate {agg} cannot be
applied to column {c}",
565 }
566 ),
567 400,
568 )
569 if allow_time and not (is_numeric or is_time):
570 return (
571 jsonify(
572 {
573 "error": f"Aggregate {agg} cannot be
applied to column {c}",
574 }
575 ),
576 400,
577 )
578 if (params.start is None or params.end is None) and (
579 params.x_axis or params.time_column
580 ):
581 axis = params.x_axis or params.time_column
582 assert axis is not None
583 row = cast(
584 tuple[datetime | None, datetime | None],
585 con.execute(
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
I'll locate the test lines around line 130 or so.
(scubaduck) root@17549eec6c89:/workspace/scubaduck# nl -ba tests/test_server_db_
types.py | sed -n '120,190p'
120 assert rv.status_code == 200
121 assert data["rows"][0][1] == big_value
122
123
124 def test_sqlite_boolean_aggregation(tmp_path: Path) -> None:
125 sqlite_file = tmp_path / "bool.sqlite"
126 import sqlite3
127
128 conn = sqlite3.connect(sqlite_file)
129 conn.execute("CREATE TABLE events (timestamp TEXT, flag BOOLEAN)")
130 conn.execute("INSERT INTO events VALUES ('2024-01-01 00:00:00', 1)")
131 conn.execute("INSERT INTO events VALUES ('2024-01-01 00:30:00', 0)")
132 conn.commit()
133 conn.close() # pyright: ignore[reportUnknownMemberType, reportAttri
buteAccessIssue]
134
135 app = server.create_app(sqlite_file)
136 client = app.test_client()
137 payload = {
138 "table": "events",
139 "start": "2024-01-01 00:00:00",
140 "end": "2024-01-02 00:00:00",
141 "graph_type": "table",
142 "aggregate": "Avg",
143 "columns": ["flag"],
144 "show_hits": True,
145 }
146 rv = client.post(
147 "/api/query", data=json.dumps(payload), content_type="applicatio
n/json"
148 )
149 data = rv.get_json()
150 assert rv.status_code == 200
151 assert data["rows"][0][0] == 2
152 assert data["rows"][0][1] == 0.5
153
154
155 def test_sqlite_boolean_group_by(tmp_path: Path) -> None:
156 sqlite_file = tmp_path / "bool.sqlite"
157 import sqlite3
158
159 conn = sqlite3.connect(sqlite_file)
160 conn.execute("CREATE TABLE events (id INTEGER, ts TEXT, flag BOOLEAN
)")
161 conn.execute("INSERT INTO events VALUES (1, '2024-01-01 00:00:00', 1
)")
162 conn.execute("INSERT INTO events VALUES (1, '2024-01-01 00:30:00', 0
)")
163 conn.execute("INSERT INTO events VALUES (2, '2024-01-01 01:00:00', 1
)")
164 conn.commit()
165 conn.close() # pyright: ignore[reportUnknownMemberType, reportAttri
buteAccessIssue]
166
167 app = server.create_app(sqlite_file)
168 client = app.test_client()
169 payload = {
170 "table": "events",
171 "start": "2024-01-01 00:00:00",
172 "end": "2024-01-02 00:00:00",
173 "graph_type": "table",
174 "time_column": "ts",
175 "aggregate": "Avg",
176 "group_by": ["id"],
177 "columns": ["flag"],
178 }
179 rv = client.post(
180 "/api/query", data=json.dumps(payload), content_type="applicatio
n/json"
181 )
182 data = rv.get_json()
183 assert rv.status_code == 200
184 rows = sorted(data["rows"]) # order can vary
185 assert rows == [[1, 0.5], [2, 1.0]]
186
187
188 def test_envvar_db(monkeypatch: pytest.MonkeyPatch, tmp_path: Path) -> N
one:
189 csv_file = tmp_path / "custom.csv"
190 csv_file.write_text("timestamp,event,value,user\n2024-01-01 00:00:00
,login,5,bob\n")
(scubaduck) root@17549eec6c89:/workspace/scubaduck# git add scubaduck/server.py
tests/test_server_db_types.py
(scubaduck) root@17549eec6c89:/workspace/scubaduck# git commit -m "fix(server):
allow avg on bool columns" && git status --short
[work 5b6409d] fix(server): allow avg on bool columns
2 files changed, 34 insertions(+), 1 deletion(-)
(scubaduck) root@17549eec6c89:/workspace/scubaduck# git status --short
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
I’ll draft a PR referencing the bug fix and modifying aggregator to allow bool.
(scubaduck) root@17549eec6c89:/workspace/scubaduck# nl -ba scubaduck/server.py |
sed -n '544,559p'
544 if c not in column_types:
545 continue
546 ctype = column_types.get(c, "").upper()
547 is_numeric = "BOOL" in ctype or any(
548 t in ctype
549 for t in [
550 "INT",
551 "DECIMAL",
552 "REAL",
553 "DOUBLE",
554 "FLOAT",
555 "NUMERIC",
556 "HUGEINT",
557 ]
558 )
559 is_time = "TIMESTAMP" in ctype or "DATE" in ctype or
"TIME" in ctype
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
The PR will include a fix for adding bool as numeric and new test lines from 155-185.
(scubaduck) root@17549eec6c89:/workspace/scubaduck# nl -ba tests/test_server_db_
types.py | sed -n '154,186p'
154
155 def test_sqlite_boolean_group_by(tmp_path: Path) -> None:
156 sqlite_file = tmp_path / "bool.sqlite"
157 import sqlite3
158
159 conn = sqlite3.connect(sqlite_file)
160 conn.execute("CREATE TABLE events (id INTEGER, ts TEXT, flag BOOLEAN
)")
161 conn.execute("INSERT INTO events VALUES (1, '2024-01-01 00:00:00', 1
)")
162 conn.execute("INSERT INTO events VALUES (1, '2024-01-01 00:30:00', 0
)")
163 conn.execute("INSERT INTO events VALUES (2, '2024-01-01 01:00:00', 1
)")
164 conn.commit()
165 conn.close() # pyright: ignore[reportUnknownMemberType, reportAttri
buteAccessIssue]
166
167 app = server.create_app(sqlite_file)
168 client = app.test_client()
169 payload = {
170 "table": "events",
171 "start": "2024-01-01 00:00:00",
172 "end": "2024-01-02 00:00:00",
173 "graph_type": "table",
174 "time_column": "ts",
175 "aggregate": "Avg",
176 "group_by": ["id"],
177 "columns": ["flag"],
178 }
179 rv = client.post(
180 "/api/query", data=json.dumps(payload), content_type="applicatio
n/json"
181 )
182 data = rv.get_json()
183 assert rv.status_code == 200
184 rows = sorted(data["rows"]) # order can vary
185 assert rows == [[1, 0.5], [2, 1.0]]
186
(scubaduck) root@17549eec6c89:/workspace/scubaduck#
I'll create the PR, summarizing the bug fix, referencing changes and test results.