Codex Task Logs

Task ID: task_e_682fdbae60788323a9082313aff3f6f9

Environment setup
Configuring language runtimes... + rm -- /tmp/bILhWz-setup_script.sh + source ./codex_setup.sh ++ uv sync --frozen Using CPython 3.12.3 interpreter at: /usr/bin/python3.12 Creating virtual environment at: .venv Building scubaduck @ file:///workspace/scubaduck Downloading duckdb (19.3MiB) Downloading pyright (5.3MiB) Downloading ruff (11.0MiB) Downloading playwright (43.1MiB) Downloading ruff Built scubaduck @ file:///workspace/scubaduck Downloading duckdb Downloading playwright Downloading pyright Prepared 33 packages in 1.70s Installed 33 packages in 81ms + blinker==1.9.0 + certifi==2025.4.26 + charset-normalizer==3.4.2 + click==8.2.0 + duckdb==1.2.2 + execnet==2.1.1 + flask==3.1.1 + greenlet==3.2.2 + idna==3.10 + iniconfig==2.1.0 + itsdangerous==2.2.0 + jinja2==3.1.6 + markupsafe==3.0.2 + nodeenv==1.9.1 + packaging==25.0 + playwright==1.52.0 + pluggy==1.6.0 + pyee==13.0.0 + pyright==1.1.400 + pytest==8.3.5 + pytest-base-url==2.1.0 + pytest-playwright==0.7.0 + pytest-xdist==3.6.1 + python-dateutil==2.9.0.post0 + python-slugify==8.0.4 + requests==2.32.3 + ruff==0.11.10 + scubaduck==0.1.0 (from file:///workspace/scubaduck) + six==1.17.0 + text-unidecode==1.3 + typing-extensions==4.13.2 + urllib3==2.4.0 + werkzeug==3.1.3 ++ source .venv/bin/activate +++ '[' -z '' ']' +++ '[' -n x ']' +++ SCRIPT_PATH=.venv/bin/activate +++ '[' .venv/bin/activate = /tmp/bILhWz-setup_script.sh ']' +++ deactivate nondestructive +++ unset -f pydoc +++ '[' -z '' ']' +++ '[' -z '' ']' +++ hash -r +++ '[' -z '' ']' +++ unset VIRTUAL_ENV +++ unset VIRTUAL_ENV_PROMPT +++ '[' '!' nondestructive = nondestructive ']' +++ VIRTUAL_ENV=/workspace/scubaduck/.venv +++ '[' linux-gnu = cygwin ']' +++ '[' linux-gnu = msys ']' +++ export VIRTUAL_ENV +++ '[' -z '' ']' +++ unset SCRIPT_PATH +++ _OLD_VIRTUAL_PATH=/root/.cargo/bin:/root/.rbenv/shims:/root/.rbenv/bin:/root/.rbenv/shims:/root/.local/share/swiftly/bin:/root/.bun/bin:/root/.nvm/versions/node/v22.16.0/bin:/root/.pyenv/shims:3441PYENV_ROOT/shims:/root/.pyenv/bin:/usr/local/go/bin:/root/go/bin:/root/.rbenv/bin:/root/.rbenv/shims:/root/.bun/bin:/root/.local/bin:/root/.pyenv/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin +++ PATH=/workspace/scubaduck/.venv/bin:/root/.cargo/bin:/root/.rbenv/shims:/root/.rbenv/bin:/root/.rbenv/shims:/root/.local/share/swiftly/bin:/root/.bun/bin:/root/.nvm/versions/node/v22.16.0/bin:/root/.pyenv/shims:3441PYENV_ROOT/shims:/root/.pyenv/bin:/usr/local/go/bin:/root/go/bin:/root/.rbenv/bin:/root/.rbenv/shims:/root/.bun/bin:/root/.local/bin:/root/.pyenv/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin +++ export PATH +++ '[' xscubaduck '!=' x ']' +++ VIRTUAL_ENV_PROMPT=scubaduck +++ export VIRTUAL_ENV_PROMPT +++ '[' -z '' ']' +++ '[' -z '' ']' +++ _OLD_VIRTUAL_PS1= +++ PS1='(scubaduck) ' +++ export PS1 +++ alias pydoc +++ true +++ hash -r ++ python -c 'import os; import duckdb; con = duckdb.connect(); con.execute(f"SET http_proxy = '\''{os.getenv("HTTP_PROXY")}'\''"); con.execute("INSTALL '\''sqlite'\'';")' ++ playwright install chromium Downloading Chromium 136.0.7103.25 (playwright build v1169) from https://cdn.playwright.dev/dbazure/download/playwright/builds/chromium/1169/chromium-linux.zip 167.7 MiB [] 0% 0.0s167.7 MiB [] 0% 32.2s167.7 MiB [] 0% 24.8s167.7 MiB [] 0% 15.8s167.7 MiB [] 0% 9.7s167.7 MiB [] 1% 6.2s167.7 MiB [] 2% 4.4s167.7 MiB [] 3% 2.9s167.7 MiB [] 5% 2.4s167.7 MiB [] 6% 2.3s167.7 MiB [] 7% 2.1s167.7 MiB [] 8% 1.9s167.7 MiB [] 9% 1.8s167.7 MiB [] 10% 1.8s167.7 MiB [] 12% 1.6s167.7 MiB [] 14% 1.5s167.7 MiB [] 15% 1.4s167.7 MiB [] 17% 1.3s167.7 MiB [] 19% 1.2s167.7 MiB [] 22% 1.1s167.7 MiB [] 24% 1.0s167.7 MiB [] 26% 1.0s167.7 MiB [] 27% 0.9s167.7 MiB [] 29% 0.9s167.7 MiB [] 32% 0.8s167.7 MiB [] 34% 0.8s167.7 MiB [] 36% 0.7s167.7 MiB [] 38% 0.7s167.7 MiB [] 39% 0.7s167.7 MiB [] 40% 0.7s167.7 MiB [] 41% 0.7s167.7 MiB [] 42% 0.7s167.7 MiB [] 42% 0.8s167.7 MiB [] 43% 0.8s167.7 MiB [] 45% 0.7s167.7 MiB [] 47% 0.7s167.7 MiB [] 49% 0.6s167.7 MiB [] 52% 0.6s167.7 MiB [] 54% 0.6s167.7 MiB [] 56% 0.5s167.7 MiB [] 58% 0.5s167.7 MiB [] 60% 0.5s167.7 MiB [] 62% 0.4s167.7 MiB [] 65% 0.4s167.7 MiB [] 66% 0.4s167.7 MiB [] 69% 0.4s167.7 MiB [] 70% 0.3s167.7 MiB [] 72% 0.3s167.7 MiB [] 74% 0.3s167.7 MiB [] 75% 0.3s167.7 MiB [] 78% 0.2s167.7 MiB [] 80% 0.2s167.7 MiB [] 82% 0.2s167.7 MiB [] 84% 0.2s167.7 MiB [] 86% 0.1s167.7 MiB [] 88% 0.1s167.7 MiB [] 90% 0.1s167.7 MiB [] 92% 0.1s167.7 MiB [] 94% 0.1s167.7 MiB [] 96% 0.0s167.7 MiB [] 98% 0.0s167.7 MiB [] 100% 0.0s Chromium 136.0.7103.25 (playwright build v1169) downloaded to /root/.cache/ms-playwright/chromium-1169 Downloading FFMPEG playwright build v1011 from https://cdn.playwright.dev/dbazure/download/playwright/builds/ffmpeg/1011/ffmpeg-linux.zip 2.3 MiB [] 0% 0.0s2.3 MiB [] 4% 0.5s2.3 MiB [] 10% 0.3s2.3 MiB [] 22% 0.2s2.3 MiB [] 49% 0.1s2.3 MiB [] 97% 0.0s2.3 MiB [] 100% 0.0s FFMPEG playwright build v1011 downloaded to /root/.cache/ms-playwright/ffmpeg-1011 Downloading Chromium Headless Shell 136.0.7103.25 (playwright build v1169) from https://cdn.playwright.dev/dbazure/download/playwright/builds/chromium/1169/chromium-headless-shell-linux.zip 101.4 MiB [] 0% 0.0s101.4 MiB [] 0% 18.5s101.4 MiB [] 0% 17.9s101.4 MiB [] 0% 12.3s101.4 MiB [] 0% 7.5s101.4 MiB [] 1% 4.5s101.4 MiB [] 3% 2.6s101.4 MiB [] 5% 1.9s101.4 MiB [] 7% 1.7s101.4 MiB [] 9% 1.5s101.4 MiB [] 11% 1.3s101.4 MiB [] 12% 1.3s101.4 MiB [] 13% 1.2s101.4 MiB [] 13% 1.4s101.4 MiB [] 13% 1.5s101.4 MiB [] 14% 1.6s101.4 MiB [] 15% 1.5s101.4 MiB [] 18% 1.3s101.4 MiB [] 21% 1.2s101.4 MiB [] 22% 1.1s101.4 MiB [] 23% 1.2s101.4 MiB [] 23% 1.3s101.4 MiB [] 24% 1.4s101.4 MiB [] 25% 1.4s101.4 MiB [] 26% 1.4s101.4 MiB [] 27% 1.4s101.4 MiB [] 30% 1.2s101.4 MiB [] 31% 1.2s101.4 MiB [] 35% 1.0s101.4 MiB [] 37% 1.0s101.4 MiB [] 40% 0.9s101.4 MiB [] 41% 0.9s101.4 MiB [] 43% 0.8s101.4 MiB [] 45% 0.8s101.4 MiB [] 46% 0.8s101.4 MiB [] 49% 0.7s101.4 MiB [] 51% 0.8s101.4 MiB [] 52% 0.8s101.4 MiB [] 54% 0.7s101.4 MiB [] 56% 0.7s101.4 MiB [] 57% 0.7s101.4 MiB [] 58% 0.7s101.4 MiB [] 59% 0.7s101.4 MiB [] 61% 0.6s101.4 MiB [] 62% 0.6s101.4 MiB [] 63% 0.6s101.4 MiB [] 65% 0.5s101.4 MiB [] 66% 0.5s101.4 MiB [] 67% 0.5s101.4 MiB [] 69% 0.5s101.4 MiB [] 70% 0.5s101.4 MiB [] 71% 0.5s101.4 MiB [] 72% 0.5s101.4 MiB [] 74% 0.4s101.4 MiB [] 76% 0.4s101.4 MiB [] 78% 0.3s101.4 MiB [] 79% 0.3s101.4 MiB [] 80% 0.3s101.4 MiB [] 82% 0.3s101.4 MiB [] 83% 0.3s101.4 MiB [] 86% 0.2s101.4 MiB [] 87% 0.2s101.4 MiB [] 88% 0.2s101.4 MiB [] 89% 0.2s101.4 MiB [] 90% 0.2s101.4 MiB [] 91% 0.2s101.4 MiB [] 92% 0.2s101.4 MiB [] 93% 0.1s101.4 MiB [] 95% 0.1s101.4 MiB [] 96% 0.1s101.4 MiB [] 99% 0.0s101.4 MiB [] 100% 0.0s Chromium Headless Shell 136.0.7103.25 (playwright build v1169) downloaded to /root/.cache/ms-playwright/chromium_headless_shell-1169 ++ echo 'source .venv/bin/activate'
Internet turned off
Bug: With TEST db, extra table, table view, group by num, aggregate count, the headers and data in the table don't line up; there's one more column in data. The headers are correct: we should have num (group by column), hits, and nothing else (because this is count aggregate).

I'll check the root of the repository to find AGENTS.md as directed.

shell
bash: .venv/bin/activate: No such file or directory root@3f0164aeb2f9:/workspace# ls scubaduck
root@3f0164aeb2f9:/workspace# cd scubaduck root@3f0164aeb2f9:/workspace/scubaduck# ls AGENTS.md codex_setup.sh scubaduck tests README.md pyproject.toml stubs uv.lock
root@3f0164aeb2f9:/workspace/scubaduck# cat AGENTS.md - Use "source .venv/bin/activate" to activate the virtual environment before running any commands - ONLY use non-interactive commands like cat, sed, apply_patch to do edits. Do NOT use interactive editors. - Do NOT attempt to install packages. Only the packages specified in pyproject.toml are available. You cannot add new packages. If you desperately want another package, make a note of it in the final PR description. - Use conventional commits to format PR title - There are no nested AGENTS.md files, this is the only agents file - When using Playwright, ONLY use chromium browser. This browser is already installed. - Use "ruff check" to check lint, "ruff format" to autoformat files and "pyright" to typecheck. - When writing the PR description, include the original prompt supplied by the user. - When you add functionality to the server, add server tests to tests/test_server.py. When you add features to the frontend, add frontend tests to tests/test_web.py

I need to review the README for testing instructions and follow .venv setup.

shell
root@3f0164aeb2f9:/workspace/scubaduck# cat README.md | head -n 40 I really like Scuba (Meta's internal real-time database system). The distributed , real-time database part of Scuba is quite difficult (and expensive) to replica te, but I also really like Scuba's UI for doing queries, and I have found myself wishing that I have access to it even for "small" databases, e.g., I have a sql ite dataset I want to explore. Pivotal ideas: * Time series by default. In the dedicated "time series" view, there are many fe atures specifically oriented towards working towards tables that represent event s that occurred over time: the start, end, compare, aggregate and granularity fi elds all specially privilege the timestamp field. In fact, you can't log events to Scuba's backing data store without a timestamp, they always come with one. (S cuba also supports other views that don't presuppose a time series, but the time series is the most beloved and well used view.) This is in contrast to typical software which tries to generalize to arbitrary data first, with time series bei ng added on later. * It's all about exploration. Scuba is predicated on the idea that you don't kno w what you're looking for, that you are going to spend time tweaking queries and changing filters/grouping as part of an investigation to figure out why a syste m behaves the way it is. So the filters/comparisons/groupings you want to edit a re always visible on the left sidebar, with the expectation that you're going to tweak the query to look at something else. Similarly, all the parameters of you r query get saved into your URL, so your browser history can double up as a quer y history / you can easily share a query with someone else. This is contrast to typical software which is often oriented to making pretty dashboards and reports . (This function is important too, but it's not what I want in exploration mode! ) * You can fix data problems in the query editor. It's pretty common to have mess ed up and ended up with a database that doesn't have exactly the columns you nee d, or some columns that are corrupted in some way. Scuba has pretty robust suppo rt for defining custom columns with arbitrary SQL functions, grouping over them as if they were native functions, and doing so with minimal runtime cost (Scuba aims to turn around your query in milliseconds!) Having to go and run a huge dat a pipeline to fix your data is a big impediment to exploration; quick and easy c ustom columns means you can patch over problems when you're investigating and fi x them for real later. We're going to build a exploratory data analysis tool like Scuba for time series database (i.e., a database with a mandatory timestamp representing the time an event occurred). We'll use DuckDB as the underlying SQL engine served from a Py thon server, and render the GUI/results as a webpage with vanilla HTML and JS. W e'll use choices.js to support token inputs. We define a token input to mean a text input element where as you type a dropdown displays with valid values, and if you select one or press enter, the selection turns into a token/chip that can only be deleted as one unit. To start, we are going to support one views: samples. The samples view only all ows you to view individual samples from the database, subject to a filter. Our m ain UI concept is that there is a left sidebar that is the query editor, and the right side that shows the view. The sidebar is always visible and defaults to the query parameters of the current view. After you make changes to the query, clicking the "Dive" button updates the view. The URL of the page encodes all of the values of the query (and gets updated when you Dive), so the browser's back button lets you view previous queries. The query editor's job is to generate a SQL query, which then is applied on the database, and then the result visualized according to the view. Here are the settings you can apply to the query. The help text should show up w hen you mouse over the field name: * Start/End - Help text: "Sets the start/end of the time range to query. Can be any kind of datetime string. For example: 'April 23, 2014' or 'yesterday'." The UI for this selector supports both relative selections (now, -1 hour, -3 hours, -12 hours, -1 day, -3 days, -1 week, -1 fortnight, -30 days, -90 days, -1 month, -1 year) as well as specifying an absolute date. The way this field is rendere d is there is a free form text box, a drop down arrow (for the relative selector s), and then a calendar button (for date selection). * Order By - Help text: "Choose a column to sort results by." There is an ASC/D ESC toggle next to it. * Limit - Help text: "Choose the maximum number of results to show in the chart after any aggregations have been applied. For example, a limit of 10 will show no more than 10 rows for a table, etc." * Filters - You can create as many filters as you want. You can either write a f ilter using a UI or manual SQL. In the UI, filter consists of a column name, a r elation (e.g., =, !=, <, >) and then a text field. The text field is a token inp ut. It accepts multiple tokens for = relation, in which case we match using an O R for all options. There is also a "Columns" tab which lets you view all fields in the table, organ ized by their type. You can also define derived columns, by specifying a column name and SQL expression. Derived columns can be used for all parts of the UI, in cluding filters/group by/etc. Columns have checkboxes indicating if we should SE LECT them or not. Each selected column shows up in the graph. There is an All/N one link which can be used to select/deselect all checkboxes. The query UI constructs a SQL query that intuitively has this form: ``` SELECT column, column, ..., FROM table WHERE time >= min-timestamp AND time <= max-timestamp [AND condition ...] ORDER BY aggregate(column) LIMIT number ``` You should write tests for the server backend, demonstrating that at specific qu ery values we get back the correct rows of data. ## Running the server

I’m looking for test-related instructions towards the end of the file.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '40,120p' README.md ## Running the server Activate the virtual environment and run the Flask development server: ```bash flask --app scubaduck.server run --debug ``` By default the server loads `sample.csv`. Set the `SCUBADUCK_DB` environment variable to point at a different database file (CSV, SQLite or DuckDB) if you want to use another dataset. The special value `TEST` starts the server with a small in-memory SQLite dataset used by the automated tests. If the file does not exist, the server will raise a `FileNotFoundError` during startup.

I'm checking the bottom of the document for any test-related instructions.

shell
root@3f0164aeb2f9:/workspace/scubaduck# grep -n "Running tests" -n README.md

Maybe the test instructions aren't in the files. I'll check to confirm.

shell
root@3f0164aeb2f9:/workspace/scubaduck# grep -n "test" README.md 38:You should write tests for the server backend, demonstrating that at specific query values we get back the correct rows of data. 51:small in-memory SQLite dataset used by the automated tests. If the file does

I'll browse the tests directory to find any relevant instructions.

shell
root@3f0164aeb2f9:/workspace/scubaduck# ls tests conftest.py test_server_time.py test_web_graph.py test_multi_table_web.py test_server_timeseries.py test_web_table.py test_server.py test_web.py test_web_timeseries.py test_server_basic.py test_web_basics.py web_utils.py test_server_db_types.py test_web_chips.py test_server_errors.py test_web_columns.py

The bug likely involves a table view misalignment issue—I'll check the repository structure.

shell
root@3f0164aeb2f9:/workspace/scubaduck# ls scubaduck __init__.py sample.csv server.py static

I'll check out server.py to locate the function for running queries.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '1,160p' scubaduck/server.py from __future__ import annotations from dataclasses import dataclass, field, replace from typing import Any, Dict, List, Tuple, cast import re from datetime import datetime, timedelta, timezone import time from pathlib import Path import os import traceback import math import duckdb from dateutil import parser as dtparser from dateutil.relativedelta import relativedelta from flask import Flask, jsonify, request, send_from_directory def _quote(ident: str) -> str: """Return identifier quoted for SQL.""" return f'"{ident.replace('"', '""')}"' @dataclass class Filter: column: str op: str value: str | int | float | list[str] | None @dataclass class QueryParams: start: str | None = None end: str | None = None order_by: str | None = None order_dir: str = "ASC" limit: int | None = None columns: list[str] = field(default_factory=lambda: []) filters: list[Filter] = field(default_factory=lambda: []) derived_columns: dict[str, str] = field(default_factory=lambda: {}) graph_type: str = "samples" group_by: list[str] = field(default_factory=lambda: []) aggregate: str | None = None show_hits: bool = False x_axis: str | None = None granularity: str = "Auto" fill: str = "0" table: str = "events" time_column: str | None = "timestamp" time_unit: str = "s" def _load_database(path: Path) -> duckdb.DuckDBPyConnection: if not path.exists(): raise FileNotFoundError(path) ext = path.suffix.lower() if ext == ".csv": con = duckdb.connect() con.execute( f"CREATE TABLE events AS SELECT * FROM read_csv_auto('{path.as_posix ()}')" ) elif ext in {".db", ".sqlite"}: con = duckdb.connect() con.execute("LOAD sqlite") con.execute(f"ATTACH '{path.as_posix()}' AS db (TYPE SQLITE)") tables = [ r[0] for r in con.execute( "SELECT name FROM sqlite_master WHERE type='table'" ).fetchall() ] for t in tables: con.execute(f'CREATE VIEW "{t}" AS SELECT * FROM db."{t}"') else: con = duckdb.connect(path) return con def _create_test_database() -> duckdb.DuckDBPyConnection: """Return a DuckDB connection with a small multi-table dataset.""" con = duckdb.connect() con.execute( "CREATE TABLE events (id INTEGER PRIMARY KEY, ts INTEGER, val REAL, name TEXT, flag BOOLEAN)" ) con.execute("INSERT INTO events VALUES (1, 1704067200, 1.5, 'alice', 1)") con.execute("INSERT INTO events VALUES (2, 1704070800, 2.0, 'bob', 0)") con.execute('CREATE TABLE extra (ts INTEGER, "desc" TEXT, num INTEGER)') con.execute("INSERT INTO extra VALUES (1704067200, 'x', 1)") con.execute("INSERT INTO extra VALUES (1704070800, 'y', 2)") return con _REL_RE = re.compile( r"([+-]?\d+(?:\.\d*)?)\s*(hour|hours|day|days|week|weeks|fortnight|fortnight s|month|months|year|years)", re.IGNORECASE, ) def parse_time(val: str | None) -> str | None: """Parse an absolute or relative time string into ``YYYY-MM-DD HH:MM:SS``."" " if val is None or val == "": return None s = val.strip() if s.lower() == "now": dt = datetime.now(timezone.utc) return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S") m = _REL_RE.fullmatch(s) if m: qty = float(m.group(1)) unit = m.group(2).lower() now = datetime.now(timezone.utc) dt: datetime if unit.startswith("hour"): dt = now + timedelta(hours=qty) elif unit.startswith("day"): dt = now + timedelta(days=qty) elif unit.startswith("week"): dt = now + timedelta(weeks=qty) elif unit.startswith("fortnight"): dt = now + timedelta(weeks=2 * qty) elif unit.startswith("month"): if qty.is_integer(): dt = now + relativedelta(months=int(qty)) else: dt = now + timedelta(days=30 * qty) elif unit.startswith("year"): if qty.is_integer(): dt = now + relativedelta(years=int(qty)) else: dt = now + timedelta(days=365 * qty) else: # pragma: no cover - defensive raise ValueError(f"Unsupported unit: {unit}") return dt.replace(microsecond=0).strftime("%Y-%m-%d %H:%M:%S") dt = dtparser.parse(s) return dt.replace(microsecond=0, tzinfo=None).strftime("%Y-%m-%d %H:%M:%S") def _numeric_to_datetime(value: int | float, unit: str) -> datetime: """Convert a numeric timestamp ``value`` with unit ``unit`` to ``datetime``. Heuristically fall back to seconds when the converted value is before 1990 but the seconds interpretation is in a reasonable range. This handles integer columns stored in seconds even when ``unit`` is mistakenly set to a finer granularity. """ divisor = { "s": 1, "ms": 1000, "us": 1_000_000, "ns": 1_000_000_000, }.get(unit, 1) dt = datetime.fromtimestamp(int(value) / divisor, tz=timezone.utc) if unit != "s" and dt.year < 1990:

Since server.py is long, I'll look for lines involving "group by" or "count".

shell
root@3f0164aeb2f9:/workspace/scubaduck# grep -n "group" -n scubaduck/server.py | head -n 20 44: group_by: list[str] = field(default_factory=lambda: []) 113: qty = float(m.group(1)) 114: unit = m.group(2).lower() 250: group_cols = params.group_by[:] 269: group_cols = ["bucket"] + group_cols 271: has_agg = bool(group_cols) or params.aggregate is not None 274: group_cols[1:] if params.graph_type == "timeseries" else group_c ols 278: selected_for_order.update(group_cols) 303: if col in group_cols: 307: select_parts.insert(len(group_cols), "count(*) AS Hits") 388: if group_cols: 389: lines.append("GROUP BY " + ", ".join(_quote(c) for c in group_cols)) 508: group_by=payload.get("group_by", []), 535: params.group_by or params.aggregate or params.show_hits 540: "error": "group_by, aggregate and show_hits are only valid for table or timeseries view" 573: for col in params.group_by: 579: if params.group_by or params.graph_type == "timeseries": 592: if c in params.group_by or c == params.x_axis:

I’ll search for mentions of 'aggregate count' to gather relevant information.

shell
root@3f0164aeb2f9:/workspace/scubaduck# grep -n "aggregate" -n scubaduck/server. py | head -n 20 45: aggregate: str | None = None 271: has_agg = bool(group_cols) or params.aggregate is not None 277: agg = (params.aggregate or "count").lower() 509: aggregate=payload.get("aggregate"), 535: params.group_by or params.aggregate or params.show_hits 540: "error": "group_by, aggregate and show_hits are only valid for table or timeseries view" 580: agg = (params.aggregate or "count").lower()

I'm scrolling through the lines to check the necessary content.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '248,316p' scubaduck/server.py def build_query(params: QueryParams, column_types: Dict[str, str] | None = None) -> str: select_parts: list[str] = [] group_cols = params.group_by[:] selected_for_order = set(params.columns) | set(params.derived_columns.keys() ) if params.graph_type == "timeseries": sec = _granularity_seconds(params.granularity, params.start, params.end) x_axis = params.x_axis or params.time_column if x_axis is None: raise ValueError("x_axis required for timeseries") xexpr = _time_expr(x_axis, column_types, params.time_unit) if params.start: bucket_expr = ( f"TIMESTAMP '{params.start}' + INTERVAL '{sec} second' * " f"CAST(floor((epoch({xexpr}) - epoch(TIMESTAMP '{params.start}') )/{sec}) AS BIGINT)" ) else: bucket_expr = ( f"TIMESTAMP 'epoch' + INTERVAL '{sec} second' * " f"CAST(floor(epoch({xexpr})/{sec}) AS BIGINT)" ) select_parts.append(f"{bucket_expr} AS bucket") group_cols = ["bucket"] + group_cols selected_for_order.add("bucket") has_agg = bool(group_cols) or params.aggregate is not None if has_agg: select_cols = ( group_cols[1:] if params.graph_type == "timeseries" else group_cols ) select_parts.extend(_quote(c) for c in select_cols) agg = (params.aggregate or "count").lower() selected_for_order.update(group_cols) def agg_expr(col: str) -> str: expr = _quote(col) ctype = column_types.get(col, "").upper() if column_types else "" if "BOOL" in ctype: expr = f"CAST({_quote(col)} AS BIGINT)" if agg.startswith("p"): quant = float(agg[1:]) / 100 return f"quantile({expr}, {quant})" if agg == "count distinct": return f"count(DISTINCT {expr})" if agg == "avg" and column_types is not None: if "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype: return ( "TIMESTAMP 'epoch' + INTERVAL '1 second' * " f"CAST(avg(epoch({_quote(col)})) AS BIGINT)" ) return f"{agg}({expr})" if agg == "count": select_parts.append("count(*) AS Count") selected_for_order.add("Count") else: for col in params.columns: if col in group_cols: continue select_parts.append(f"{agg_expr(col)} AS {_quote(col)}") selected_for_order.add(col) select_parts.insert(len(group_cols), "count(*) AS Hits") selected_for_order.add("Hits") else: select_parts.extend(_quote(c) for c in params.columns) selected_for_order.update(params.columns) order_by = params.order_by if order_by == "Samples": order_by = "Hits" order_by = order_by if order_by in selected_for_order else None

I'll keep going until I reach the section around line 316.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '316,408p' scubaduck/server.py order_by = order_by if order_by in selected_for_order else None if has_agg and params.derived_columns: inner_params = replace( params, derived_columns={}, order_by=None, limit=None, ) inner_sql = build_query(inner_params, column_types) outer_select = ["t.*"] + [ f"{expr} AS {name}" for name, expr in params.derived_columns.items() ] indented_inner = "\n".join(" " + line for line in inner_sql.splitline s()) lines = [ f"SELECT {', '.join(outer_select)}", "FROM (", indented_inner, ") t", ] if order_by: lines.append(f"ORDER BY {_quote(order_by)} {params.order_dir}") elif params.graph_type == "timeseries": lines.append("ORDER BY bucket") if params.limit is not None: lines.append(f"LIMIT {params.limit}") return "\n".join(lines) for name, expr in params.derived_columns.items(): select_parts.append(f"{expr} AS {name}") selected_for_order.add(name) select_clause = ", ".join(select_parts) if select_parts else "*" lines = [f"SELECT {select_clause}", f'FROM "{params.table}"'] where_parts: list[str] = [] if params.time_column: time_expr = _time_expr(params.time_column, column_types, params.time_uni t) else: time_expr = None if time_expr and params.start: where_parts.append(f"{time_expr} >= '{params.start}'") if time_expr and params.end: where_parts.append(f"{time_expr} <= '{params.end}'") for f in params.filters: op = f.op if op in {"empty", "!empty"}: val = "''" else: if f.value is None: continue if isinstance(f.value, list): if not f.value: continue if op == "=": qcol = _quote(f.column) vals = " OR ".join(f"{qcol} = '{v}'" for v in f.value) where_parts.append(f"({vals})") continue val = f"'{f.value}'" if isinstance(f.value, str) else str(f.value) qcol = _quote(f.column) if op == "contains": where_parts.append(f"{qcol} ILIKE '%' || {val} || '%'") elif op == "!contains": where_parts.append(f"{qcol} NOT ILIKE '%' || {val} || '%'") elif op == "empty": where_parts.append(f"{qcol} = {val}") elif op == "!empty": where_parts.append(f"{qcol} != {val}") else: where_parts.append(f"{qcol} {op} {val}") if where_parts: lines.append("WHERE " + " AND ".join(where_parts)) if group_cols: lines.append("GROUP BY " + ", ".join(_quote(c) for c in group_cols)) if order_by: lines.append(f"ORDER BY {_quote(order_by)} {params.order_dir}") elif params.graph_type == "timeseries": lines.append("ORDER BY bucket") if params.limit is not None: lines.append(f"LIMIT {params.limit}") return "\n".join(lines) def create_app(db_file: str | Path | None = None) -> Flask: app = Flask(__name__, static_folder="static") if db_file is None: env_db = os.environ.get("SCUBADUCK_DB") if env_db: db_file = env_db if isinstance(db_file, str) and db_file.upper() == "TEST": con = _create_test_database() else: db_path = Path(db_file or Path(__file__).with_name("sample.csv")).resolv e()

I'll keep scrolling until I reach section 408 to gather the necessary details.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '408,612p' scubaduck/server.py db_path = Path(db_file or Path(__file__).with_name("sample.csv")).resolv e() con = _load_database(db_path) tables = [r[0] for r in con.execute("SHOW TABLES").fetchall()] if not tables: raise ValueError("No tables found in database") default_table = tables[0] columns_cache: Dict[str, Dict[str, str]] = {} def get_columns(table: str) -> Dict[str, str]: if table not in columns_cache: rows = con.execute(f'PRAGMA table_info("{table}")').fetchall() if not rows: raise ValueError(f"Unknown table: {table}") columns_cache[table] = {r[1]: r[2] for r in rows} return columns_cache[table] sample_cache: Dict[Tuple[str, str, str], Tuple[List[str], float]] = {} CACHE_TTL = 60.0 CACHE_LIMIT = 200 @app.route("/") def index() -> Any: # pyright: ignore[reportUnusedFunction] assert app.static_folder is not None return send_from_directory(app.static_folder, "index.html") @app.route("/js/<path:filename>") def js(filename: str) -> Any: # pyright: ignore[reportUnusedFunction] assert app.static_folder is not None folder = Path(app.static_folder) / "js" return send_from_directory(folder, filename) @app.route("/api/tables") def tables_endpoint() -> Any: # pyright: ignore[reportUnusedFunction] return jsonify(tables) @app.route("/api/columns") def columns() -> Any: # pyright: ignore[reportUnusedFunction] table = request.args.get("table", default_table) rows = con.execute(f'PRAGMA table_info("{table}")').fetchall() return jsonify([{"name": r[1], "type": r[2]} for r in rows]) def _cache_get(key: Tuple[str, str, str]) -> List[str] | None: item = sample_cache.get(key) if item is None: return None vals, ts = item if time.time() - ts > CACHE_TTL: del sample_cache[key] return None sample_cache[key] = (vals, time.time()) return vals def _cache_set(key: Tuple[str, str, str], vals: List[str]) -> None: sample_cache[key] = (vals, time.time()) if len(sample_cache) > CACHE_LIMIT: oldest = min(sample_cache.items(), key=lambda kv: kv[1][1])[0] del sample_cache[oldest] @app.route("/api/samples") def sample_values() -> Any: # pyright: ignore[reportUnusedFunction] table = request.args.get("table", default_table) column = request.args.get("column") substr = request.args.get("q", "") column_types = get_columns(table) if not column or column not in column_types: return jsonify([]) ctype = column_types[column].upper() if "CHAR" not in ctype and "STRING" not in ctype and "VARCHAR" not in ct ype: return jsonify([]) key = (table, column, substr) cached = _cache_get(key) if cached is not None: return jsonify(cached) qcol = _quote(column) rows = con.execute( f"SELECT DISTINCT {qcol} FROM \"{table}\" WHERE CAST({qcol} AS VARCH AR) ILIKE '%' || ? || '%' LIMIT 20", [substr], ).fetchall() values = [r[0] for r in rows] _cache_set(key, values) return jsonify(values) @app.route("/api/query", methods=["POST"]) def query() -> Any: # pyright: ignore[reportUnusedFunction] payload = request.get_json(force=True) try: start = parse_time(payload.get("start")) end = parse_time(payload.get("end")) except Exception as exc: return jsonify({"error": str(exc)}), 400 params = QueryParams( start=start, end=end, order_by=payload.get("order_by"), order_dir=payload.get("order_dir", "ASC"), limit=payload.get("limit"), columns=payload.get("columns", []), derived_columns=payload.get("derived_columns", {}), graph_type=payload.get("graph_type", "samples"), group_by=payload.get("group_by", []), aggregate=payload.get("aggregate"), show_hits=payload.get("show_hits", False), x_axis=payload.get("x_axis"), granularity=payload.get("granularity", "Auto"), fill=payload.get("fill", "0"), table=payload.get("table", default_table), time_column=payload.get("time_column", "timestamp"), time_unit=payload.get("time_unit", "s"), ) if params.order_by == "Samples": params.order_by = "Hits" for f in payload.get("filters", []): params.filters.append(Filter(f["column"], f["op"], f.get("value"))) if params.table not in tables: return jsonify({"error": "Invalid table"}), 400 column_types = get_columns(params.table) if params.time_column and params.time_column not in column_types: return jsonify({"error": "Invalid time_column"}), 400 if params.time_unit not in {"s", "ms", "us", "ns"}: return jsonify({"error": "Invalid time_unit"}), 400 if params.graph_type not in {"table", "timeseries"} and ( params.group_by or params.aggregate or params.show_hits ): return ( jsonify( { "error": "group_by, aggregate and show_hits are only val id for table or timeseries view" } ), 400, ) valid_cols = set(column_types.keys()) valid_cols.update(params.derived_columns.keys()) valid_cols.add("Hits") if params.graph_type == "timeseries": if params.x_axis is None: params.x_axis = params.time_column if params.x_axis is None or params.x_axis not in valid_cols: return jsonify({"error": "Invalid x_axis"}), 400 ctype = column_types.get(params.x_axis, "").upper() is_time = any(t in ctype for t in ["TIMESTAMP", "DATE", "TIME"]) is_numeric = any( t in ctype for t in [ "INT", "DECIMAL", "REAL", "DOUBLE", "FLOAT", "NUMERIC", "HUGEINT", ] ) if not (is_time or is_numeric): return jsonify({"error": "x_axis must be a time column"}), 400 for col in params.columns: if col not in valid_cols: return jsonify({"error": f"Unknown column: {col}"}), 400 for col in params.group_by: if col not in valid_cols: return jsonify({"error": f"Unknown column: {col}"}), 400 if params.order_by and params.order_by not in valid_cols: return jsonify({"error": f"Unknown column: {params.order_by}"}), 400 if params.group_by or params.graph_type == "timeseries": agg = (params.aggregate or "count").lower() if agg.startswith("p") or agg == "sum": need_numeric = True allow_time = False elif agg == "avg" or agg in {"min", "max"}: need_numeric = False allow_time = True else: need_numeric = False allow_time = False if need_numeric or allow_time: for c in params.columns: if c in params.group_by or c == params.x_axis: continue if c not in column_types: continue ctype = column_types.get(c, "").upper() is_numeric = "BOOL" in ctype or any( t in ctype for t in [ "INT", "DECIMAL", "REAL", "DOUBLE", "FLOAT", "NUMERIC", "HUGEINT", ] ) is_time = "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype if need_numeric and not is_numeric: return ( jsonify(

I need to continue scrolling, aiming for around line 612.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '612,872p' scubaduck/server.py jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) if allow_time and not (is_numeric or is_time): return ( jsonify( { "error": f"Aggregate {agg} cannot be applied to column {c}", } ), 400, ) if (params.start is None or params.end is None) and ( params.x_axis or params.time_column ): axis = params.x_axis or params.time_column assert axis is not None row = cast( tuple[datetime | None, datetime | None], con.execute( f'SELECT min({_quote(axis)}), max({_quote(axis)}) FROM "{par ams.table}"' ).fetchall()[0], ) mn, mx = row if isinstance(mn, (int, float)): try: mn = _numeric_to_datetime(mn, params.time_unit) except Exception: return ( jsonify( { "error": ( f"Invalid time value {mn} for column {axis}" f" with time_unit {params.time_unit}" ) } ), 400, ) if isinstance(mx, (int, float)): try: mx = _numeric_to_datetime(mx, params.time_unit) except Exception: return ( jsonify( { "error": ( f"Invalid time value {mx} for column {axis}" f" with time_unit {params.time_unit}" ) } ), 400, ) if params.start is None and mn is not None: params.start = ( mn.strftime("%Y-%m-%d %H:%M:%S") if not isinstance(mn, str) else mn ) if params.end is None and mx is not None: params.end = ( mx.strftime("%Y-%m-%d %H:%M:%S") if not isinstance(mx, str) else mx ) bucket_size: int | None = None if params.graph_type == "timeseries": bucket_size = _granularity_seconds( params.granularity, params.start if isinstance(params.start, str) else None, params.end if isinstance(params.end, str) else None, ) if ( params.limit is not None and params.start is not None and params.end is not None ): try: start_dt = dtparser.parse(params.start) end_dt = dtparser.parse(params.end) buckets = math.ceil( (end_dt - start_dt).total_seconds() / bucket_size ) if buckets > 1: params.limit *= buckets except Exception: pass sql = build_query(params, column_types) try: rows = con.execute(sql).fetchall() except Exception as exc: tb = traceback.format_exc() print(f"Query failed:\n{sql}\n{tb}") return ( jsonify({"sql": sql, "error": str(exc), "traceback": tb}), 400, ) result: Dict[str, Any] = {"sql": sql, "rows": rows} if params.start is not None: result["start"] = str(params.start) if params.end is not None: result["end"] = str(params.end) if bucket_size is not None: result["bucket_size"] = bucket_size return jsonify(result) return app app = create_app() if __name__ == "__main__": app.run(debug=True)

I’m going to check out the tests in test_server.py to confirm the expected behavior.

shell
root@3f0164aeb2f9:/workspace/scubaduck# ls tests | grep server test_server.py test_server_basic.py test_server_db_types.py test_server_errors.py test_server_time.py test_server_timeseries.py

I’ll review the tests to get a better understanding of the features.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '1,160p' tests/test_server.py """Legacy test module. Tests have been split into multiple files: - test_server_basic.py - test_server_db_types.py - test_server_time.py - test_server_errors.py - test_server_timeseries.py """
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '1,200p' tests/test_server_basic. py from __future__ import annotations import json from scubaduck import server def test_basic_query() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-02 00:00:00", "order_by": "timestamp", "order_dir": "ASC", "limit": 10, "columns": ["timestamp", "event", "value", "user"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert data rows = data["rows"] # We expect first three rows (until 2024-01-02 00:00:00) assert len(rows) == 3 assert rows[0][1] == "login" assert rows[1][1] == "logout" def test_js_served() -> None: app = server.app client = app.test_client() rv = client.get("/js/chip_input.js") assert rv.status_code == 200 assert b"initChipInput" in rv.data def test_filter_multi_token() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-02 03:00:00", "order_by": "timestamp", "limit": 10, "columns": ["timestamp", "event", "value", "user"], "filters": [{"column": "user", "op": "=", "value": ["alice", "charlie"]} ], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert data rows = data["rows"] # Should only return rows for alice and charlie assert len(rows) == 3 assert rows[0][3] == "alice" assert rows[-1][3] == "charlie" def test_empty_filter_is_noop() -> None: app = server.app client = app.test_client() base_payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "limit": 100, "columns": ["timestamp", "event", "value", "user"], } no_filter = {**base_payload, "filters": []} empty_filter = { **base_payload, "filters": [{"column": "user", "op": "=", "value": None}], } rv1 = client.post( "/api/query", data=json.dumps(no_filter), content_type="application/json " ) rv2 = client.post( "/api/query", data=json.dumps(empty_filter), content_type="application/j son" ) rows1 = rv1.get_json()["rows"] rows2 = rv2.get_json()["rows"] assert rows1 == rows2 def test_select_columns() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "order_by": "timestamp", "limit": 10, "columns": ["timestamp", "user"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert data rows = data["rows"] assert len(rows[0]) == 2 assert rows[0][1] == "alice" def test_string_filter_ops() -> None: app = server.app client = app.test_client() base = { "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "order_by": "timestamp", "limit": 100, "columns": ["timestamp", "event", "value", "user"], } contains = { **base, "filters": [{"column": "user", "op": "contains", "value": "ali"}], } rv = client.post( "/api/query", data=json.dumps(contains), content_type="application/json" ) rows = rv.get_json()["rows"] assert all("ali" in r[3] for r in rows) regex = { **base, "filters": [{"column": "user", "op": "~", "value": "^a.*"}], } rv = client.post( "/api/query", data=json.dumps(regex), content_type="application/json" ) rows = rv.get_json()["rows"] assert all(r[3].startswith("a") for r in rows) assert len(rows) == 2 not_empty = {**base, "filters": [{"column": "user", "op": "!empty"}]} rv = client.post( "/api/query", data=json.dumps(not_empty), content_type="application/json " ) assert len(rv.get_json()["rows"]) == 4 def test_order_by_ignored_when_not_selected() -> None: app = server.app client = app.test_client() payload = { "table": "events", "order_by": "value", "columns": ["timestamp"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert "ORDER BY" not in data["sql"]

I'll explore the test_server_basic further and check around the group-by logic.

shell
root@3f0164aeb2f9:/workspace/scubaduck# grep -n "group_by" -n tests/test_server_ basic.py

I’ll search all tests for the group_by to check if it's used anywhere else.

shell
tests/test_server_errors.py:36: "group_by": ["user"], tests/test_server_errors.py:58: "group_by": ["user"], tests/test_server_errors.py:69:def test_samples_view_rejects_group_by() -> None: tests/test_server_errors.py:75: "group_by": ["user"], tests/test_web_table.py:77:def test_table_avg_group_by(page: Any, server_url: st r) -> None: tests/test_web_table.py:84: group_by=["user"], tests/test_web_table.py:179:def test_group_by_chip_from_url(page: Any, server_ur l: str) -> None: tests/test_web_table.py:180: url = f"{server_url}?graph_type=table&group_by=u ser&order_by=user&limit=10" tests/test_web_table.py:182: page.wait_for_selector("#group_by_field .chip", state="attached") tests/test_web_table.py:184: "Array.from(document.querySelectorAll('#grou p_by_field .chip')).map(c => c.firstChild.textContent)" tests/test_web_table.py:189:def test_group_by_autocomplete(page: Any, server_url : str) -> None: tests/test_web_table.py:191: page.wait_for_selector("#group_by_field", state= "visible") tests/test_web_table.py:192: inp = page.query_selector("#group_by_field .f-va l") tests/test_web_table.py:196: page.wait_for_selector("#group_by_field .chip-dr opdown div") tests/test_web_table.py:197: options = page.locator("#group_by_field .chip-dr opdown div").all_inner_texts() tests/test_web_table.py:201:def test_group_by_copy_icon(page: Any, server_url: s tr) -> None: tests/test_web_table.py:203: page.wait_for_selector("#group_by_field", state= "visible") tests/test_web_table.py:204: icon = page.text_content("#group_by_field .chip- copy") tests/test_web_table.py:208:def test_group_by_input_no_border(page: Any, server_ url: str) -> None: tests/test_web_table.py:210: page.wait_for_selector("#group_by_field", state= "visible")

I'm continuing to scroll through the test cases to check for group_by testing.

shell
import json from scubaduck import server def test_invalid_time_error() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "nonsense", "end": "now", "order_by": "timestamp", "limit": 10, "columns": ["timestamp"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "error" in data def test_query_error_returns_sql_and_traceback() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "columns": ["event"], "group_by": ["user"], "aggregate": "avg", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "error" in data def test_table_unknown_column_error() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "order_by": "timestamp", "limit": 100, "columns": ["user", "Hits", "value"], "group_by": ["user"], "aggregate": "Count", "show_hits": True, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 def test_samples_view_rejects_group_by() -> None: app = server.app client = app.test_client() payload = { "table": "events", "graph_type": "samples", "group_by": ["user"], "columns": ["timestamp"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "only valid" in data["error"]

I'm continuing to scroll through the rest of the file.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '160,320p' tests/test_server_erro rs.py

I’ll open tests/test_server_db_types to check out the rest.

shell
import duckdb import pytest from scubaduck import server def _make_payload() -> dict[str, object]: return { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-02 00:00:00", "order_by": "timestamp", "order_dir": "ASC", "limit": 10, "columns": ["timestamp", "event", "value", "user"], "filters": [], } def test_database_types(tmp_path: Path) -> None: csv_file = tmp_path / "events.csv" csv_file.write_text(Path("scubaduck/sample.csv").read_text()) sqlite_file = tmp_path / "events.sqlite" import sqlite3 conn = sqlite3.connect(sqlite_file) conn.execute( "CREATE TABLE events (timestamp TEXT, event TEXT, value INTEGER, user TE XT)" ) with open(csv_file) as f: next(f) for line in f: ts, ev, val, user = line.strip().split(",") conn.execute( "INSERT INTO events VALUES (?, ?, ?, ?)", (ts, ev, int(val), use r) ) conn.commit() conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce ssIssue] duckdb_file = tmp_path / "events.duckdb" con = duckdb.connect(duckdb_file) con.execute( f"CREATE TABLE events AS SELECT * FROM read_csv_auto('{csv_file.as_posix ()}')" ) con.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcces sIssue] for db in (csv_file, sqlite_file, duckdb_file): app = server.create_app(db) client = app.test_client() payload = _make_payload() rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/js on" ) rows = rv.get_json()["rows"] assert len(rows) == 3 def test_sqlite_longvarchar(tmp_path: Path) -> None: sqlite_file = tmp_path / "events.sqlite" import sqlite3 conn = sqlite3.connect(sqlite_file) conn.execute( "CREATE TABLE events (timestamp TEXT, url LONGVARCHAR, title VARCHAR(10) )" ) conn.execute( "INSERT INTO events VALUES ('2024-01-01 00:00:00', 'https://a.com', 'Hom e')" ) conn.commit() conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce ssIssue] app = server.create_app(sqlite_file) client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-01 01:00:00", "order_by": "timestamp", "columns": ["timestamp", "url", "title"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["rows"][0][1] == "https://a.com" def test_sqlite_bigint(tmp_path: Path) -> None: sqlite_file = tmp_path / "big.sqlite" import sqlite3 conn = sqlite3.connect(sqlite_file) conn.execute("CREATE TABLE events (timestamp TEXT, value INTEGER)") big_value = 13385262862605259 conn.execute( "INSERT INTO events VALUES ('2024-01-01 00:00:00', ?)", (big_value,), ) conn.commit() conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce ssIssue] app = server.create_app(sqlite_file) client = app.test_client() payload = { "table": "events", "order_by": "timestamp", "columns": ["timestamp", "value"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["rows"][0][1] == big_value def test_sqlite_boolean_aggregation(tmp_path: Path) -> None: sqlite_file = tmp_path / "bool.sqlite" import sqlite3 conn = sqlite3.connect(sqlite_file) conn.execute("CREATE TABLE events (timestamp TEXT, flag BOOLEAN)") conn.execute("INSERT INTO events VALUES ('2024-01-01 00:00:00', 1)") conn.execute("INSERT INTO events VALUES ('2024-01-01 00:30:00', 0)") conn.commit() conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce ssIssue] app = server.create_app(sqlite_file) client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-02 00:00:00", "graph_type": "table", "aggregate": "Avg", "columns": ["flag"], "show_hits": True, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["rows"][0][0] == 2 assert data["rows"][0][1] == 0.5 def test_sqlite_boolean_group_by(tmp_path: Path) -> None: sqlite_file = tmp_path / "bool.sqlite" import sqlite3 conn = sqlite3.connect(sqlite_file) conn.execute("CREATE TABLE events (id INTEGER, ts TEXT, flag BOOLEAN)") conn.execute("INSERT INTO events VALUES (1, '2024-01-01 00:00:00', 1)") conn.execute("INSERT INTO events VALUES (1, '2024-01-01 00:30:00', 0)") conn.execute("INSERT INTO events VALUES (2, '2024-01-01 01:00:00', 1)") conn.commit() conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce ssIssue] app = server.create_app(sqlite_file) client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-02 00:00:00", "graph_type": "table", "time_column": "ts", "aggregate": "Avg", "group_by": ["id"], "columns": ["flag"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 rows = sorted(data["rows"]) # order can vary assert rows == [[1, 2, 0.5], [2, 1, 1.0]] def test_envvar_db(monkeypatch: pytest.MonkeyPatch, tmp_path: Path) -> None: csv_file = tmp_path / "custom.csv" csv_file.write_text("timestamp,event,value,user\n2024-01-01 00:00:00,login,5 ,bob\n") monkeypatch.setenv("SCUBADUCK_DB", str(csv_file)) app = server.create_app() client = app.test_client() payload = _make_payload() rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) rows = rv.get_json()["rows"] assert len(rows) == 1

I'm continuing to scroll down until I reach the necessary section at the bottom.

shell
ypes.py def test_envvar_db_missing(monkeypatch: pytest.MonkeyPatch, tmp_path: Path) -> N one: missing = tmp_path / "missing.sqlite" monkeypatch.setenv("SCUBADUCK_DB", str(missing)) with pytest.raises(FileNotFoundError): server.create_app()
from scubaduck import server def test_integer_time_column(tmp_path: Path) -> None: csv_file = tmp_path / "events.csv" csv_file.write_text("created,event\n1704067200,login\n1704070800,logout\n") app = server.create_app(csv_file) client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-01 01:00:00", "order_by": "created", "columns": ["created", "event"], "time_column": "created", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 2 def test_integer_time_unit_ms(tmp_path: Path) -> None: csv_file = tmp_path / "events.csv" csv_file.write_text("created,event\n1704067200000,login\n1704070800000,logou t\n") app = server.create_app(csv_file) client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-01 01:00:00", "order_by": "created", "columns": ["created", "event"], "time_column": "created", "time_unit": "ms", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 2 def test_timeseries_default_xaxis_uses_time_column(tmp_path: Path) -> None: csv_file = tmp_path / "events.csv" csv_file.write_text("created,event\n1704067200000,login\n1704070800000,logou t\n") app = server.create_app(csv_file) client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-01 01:00:00", "graph_type": "timeseries", "granularity": "1 hour", "columns": ["event"], "aggregate": "Count", "time_column": "created", "time_unit": "ms", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 2 def test_integer_time_unit_us_default_start_end(tmp_path: Path) -> None: csv_file = tmp_path / "events.csv" csv_file.write_text( "created,event\n1704067200000000,login\n1704070800000000,logout\n" ) app = server.create_app(csv_file) client = app.test_client() payload = { "table": "events", "order_by": "created", "columns": ["created", "event"], "time_column": "created", "time_unit": "us", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["start"] == "2024-01-01 00:00:00" assert data["end"] == "2024-01-01 01:00:00" assert len(data["rows"]) == 2 def test_sqlite_integer_time_unit_us(tmp_path: Path) -> None: sqlite_file = tmp_path / "events.sqlite" import sqlite3 conn = sqlite3.connect(sqlite_file) conn.execute("CREATE TABLE visits (visit_time INTEGER, event TEXT)") big_ts = 13384551652000000 conn.execute("INSERT INTO visits VALUES (?, ?)", (big_ts, "foo")) conn.commit() conn.close() # pyright: ignore[reportUnknownMemberType, reportAttributeAcce ssIssue] app = server.create_app(sqlite_file) client = app.test_client() payload = { "table": "visits", "start": "2394-02-20 00:00:00", "end": "2394-02-21 00:00:00", "order_by": "visit_time", "columns": ["visit_time", "event"], "time_column": "visit_time", "time_unit": "us", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 1 def test_relative_time_query(monkeypatch: pytest.MonkeyPatch) -> None: app = server.app client = app.test_client() from datetime import datetime fixed_now = datetime(2024, 1, 2, 4, 0, 0) class FixedDateTime(datetime): @classmethod def now(cls, tz=None): # type: ignore[override] return fixed_now if tz is None else fixed_now.astimezone(tz) monkeypatch.setattr(server, "datetime", FixedDateTime) payload = { "table": "events", "start": "-1 hour", "end": "now", "order_by": "timestamp", "limit": 100, "columns": ["timestamp", "event", "value", "user"], "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 1 assert data["rows"][0][3] == "charlie" def test_relative_month_year(monkeypatch: pytest.MonkeyPatch) -> None: app = server.app client = app.test_client() from datetime import datetime fixed_now = datetime(2024, 1, 2, 0, 0, 0) class FixedDateTime(datetime): @classmethod def now(cls, tz=None): # type: ignore[override] return fixed_now if tz is None else fixed_now.astimezone(tz) monkeypatch.setattr(server, "datetime", FixedDateTime) payload = { "table": "events", "start": "-1 year", "end": "-1 month", "order_by": "timestamp", "limit": 10, "columns": ["timestamp"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["start"] == "2023-01-02 00:00:00" assert data["end"] == "2023-12-02 00:00:00" def test_default_start_end_returned() -> None: app = server.app client = app.test_client()

Let's continue scrolling to the file's bottom to check for groupby usage.

shell
payload = { "table": "events", "order_by": "timestamp", "limit": 5, "columns": ["timestamp"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["start"] == "2024-01-01 00:00:00" assert data["end"] == "2024-01-02 03:00:00" def test_time_column_none_no_time_filter() -> None: app = server.app client = app.test_client() payload = { "table": "events", "columns": ["timestamp", "event"], "time_column": "", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert "start" not in data and "end" not in data assert len(data["rows"]) == 4 def test_test_dataset_int32_time_s() -> None: app = server.create_app("TEST") client = app.test_client() payload = { "table": "events", "time_column": "ts", "time_unit": "s", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["start"] == "2024-01-01 00:00:00" assert data["end"] == "2024-01-01 01:00:00" assert len(data["rows"]) == 2 def test_test_dataset_int32_time_us() -> None: app = server.create_app("TEST") client = app.test_client() payload = { "table": "events", "time_column": "ts", "time_unit": "us", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["start"] == "2024-01-01 00:00:00" assert data["end"] == "2024-01-01 01:00:00" assert len(data["rows"]) == 2

I’ll take a look at the tests in test_server_timeseries.py now.

shell
def test_group_by_table() -> None: app = server.app client = app.test_client() payload: dict[str, Any] = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "order_by": "user", "limit": 10, "columns": ["value"], "group_by": ["user"], "aggregate": "Sum", "show_hits": True, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) rows = rv.get_json()["rows"] assert rows[0][0] == "alice" assert rows[0][1] == 2 assert rows[0][2] == 40 def test_table_avg_with_timestamp() -> None: app = server.app client = app.test_client() payload: dict[str, Any] = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "order_by": "user", "limit": 100, "columns": ["user", "timestamp", "value"], "group_by": ["user"], "aggregate": "Avg", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert "error" not in data rows = data["rows"] assert rows[0][0] == "alice" from dateutil import parser ts = parser.parse(rows[0][2]).replace(tzinfo=None) assert ts == parser.parse("2024-01-01 12:00:00") def test_timeseries_basic() -> None: app = server.app client = app.test_client() payload: dict[str, Any] = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "limit": 100, "group_by": ["user"], "aggregate": "Count", "columns": ["value"], "x_axis": "timestamp", "granularity": "1 day", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 4 def test_timeseries_orders_by_xaxis() -> None: app = server.app client = app.test_client() payload: dict[str, Any] = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "limit": 100, "columns": ["value"], "x_axis": "timestamp", "granularity": "1 day", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 rows = data["rows"] from dateutil import parser timestamps = [parser.parse(r[0]).replace(tzinfo=None) for r in rows] assert timestamps == sorted(timestamps) def test_timeseries_count_no_columns() -> None: app = server.app client = app.test_client() payload: dict[str, Any] = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "granularity": "1 day", "columns": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 rows = data["rows"] assert len(rows) == 2 assert rows[0][1] == 2 assert rows[1][1] == 2 assert len(rows[0]) == 3 def test_timeseries_limit_applies_to_series() -> None: app = server.app client = app.test_client() payload: dict[str, Any] = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "limit": 1, "order_by": "user", "group_by": ["user"], "aggregate": "Count", "columns": ["value"], "x_axis": "timestamp", "granularity": "1 day", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 2 assert all(r[1] == "alice" for r in data["rows"]) def test_timeseries_auto_and_fine_buckets() -> None: app = server.app client = app.test_client() def run(gran: str) -> None: payload = { "start": "2024-01-01 00:00:00", "end": "2024-01-02 03:00:00", "graph_type": "timeseries", "columns": ["value"], "x_axis": "timestamp", "granularity": gran, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/js on" ) data = rv.get_json() assert rv.status_code == 200 from dateutil import parser start = parser.parse(cast(str, payload["start"])).replace(tzinfo=None) buckets = [ parser.parse(cast(str, r[0])).replace(tzinfo=None) for r in data["ro ws"] ] assert buckets[0] == start if len(buckets) > 1: step = (buckets[1] - buckets[0]).total_seconds() assert step % data["bucket_size"] == 0 assert any(r[1] != 0 for r in data["rows"]) run("Auto") run("Fine") def test_timeseries_string_column_error() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "limit": 7, "columns": ["timestamp", "event", "value", "user"],

I’m diving deeper into the code to look at 'group_by' for timeseries.

shell
rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) assert rv.status_code == 200 def test_derived_column_basic() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "limit": 10, "columns": ["timestamp"], "derived_columns": {"val2": "value * 2"}, "filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["rows"][0][1] == 20 def test_timeseries_derived_column() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "granularity": "1 hour", "limit": 7, "columns": ["value"], "derived_columns": {"derived_1": "value * 2"}, "aggregate": "Avg", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 rows = data["rows"] assert all(r[3] == r[2] * 2 for r in rows) def test_reserved_word_column() -> None: app = server.create_app("TEST") client = app.test_client() payload = { "table": "extra", "columns": ["ts", "desc"], "order_by": "ts", "time_column": "", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 2 assert data["rows"][0][1] == "x" def test_order_by_samples_table() -> None: app = server.app client = app.test_client() payload: dict[str, Any] = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "order_by": "Samples", "order_dir": "DESC", "limit": 10, "columns": [], "group_by": ["user"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert 'ORDER BY "Hits" DESC' in data["sql"] def test_order_by_samples_timeseries() -> None: app = server.app client = app.test_client() payload: dict[str, Any] = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "order_by": "Samples", "order_dir": "DESC", "x_axis": "timestamp", "granularity": "1 day", "columns": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert 'ORDER BY "Hits" DESC' in data["sql"] def test_show_hits_client_side() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "columns": ["value"], "group_by": ["user"], "aggregate": "Sum", "show_hits": False, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert "count(*) AS Hits" in data["sql"]

I’ll keep scrolling to see if there are additional tests to review.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '400,800p' tests/test_server_time series.py

The issue involves a mismatch between table headers and data. I'll check test_web_table.

shell
tests/test_multi_table_web.py:29: select_value(page, "#table", "extra") tests/test_multi_table_web.py:36: assert table_param == "extra" tests/test_multi_table_web.py:44: select_value(page, "#table", "extra") tests/test_multi_table_web.py:50: assert page.input_value("#table") == "extra " tests/test_multi_table_web.py:52: assert disp is not None and disp.strip() == "extra" tests/test_multi_table_web.py:67: select_value(page, "#table", "extra") tests/test_multi_table_web.py:68: page.wait_for_function("document.querySelec tor('#table').value === 'extra'") tests/test_server_timeseries.py:257: "table": "extra",

I'll review the multi-table tests to ensure they're complete and accurate.

shell
from typing import Any import pytest from werkzeug.serving import make_server from scubaduck.server import create_app from tests.web_utils import select_value @pytest.fixture() def multi_table_server_url() -> Iterator[str]: app = create_app("TEST") httpd = make_server("127.0.0.1", 0, app) port = httpd.server_port thread = threading.Thread(target=httpd.serve_forever) thread.start() try: yield f"http://127.0.0.1:{port}" finally: httpd.shutdown() thread.join() def test_table_param_updates_on_dive(page: Any, multi_table_server_url: str) -> None: page.goto(multi_table_server_url + "?table=events") page.wait_for_selector("#table option", state="attached") select_value(page, "#table", "extra") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") table_param = page.evaluate( "new URLSearchParams(window.location.search).get('table')" ) assert table_param == "extra" def test_table_dropdown_persists_on_refresh( page: Any, multi_table_server_url: str ) -> None: page.goto(multi_table_server_url + "?table=events") page.wait_for_selector("#table option", state="attached") select_value(page, "#table", "extra") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") page.reload() page.wait_for_selector("#table option", state="attached") assert page.input_value("#table") == "extra" disp = page.text_content("#table + .dropdown-display") assert disp is not None and disp.strip() == "extra" def test_table_switch_resets_view_settings( page: Any, multi_table_server_url: str ) -> None: page.goto(multi_table_server_url + "?table=events") page.wait_for_selector("#table option", state="attached") page.click("text=Columns") page.wait_for_selector("#column_groups input", state="attached") page.uncheck("#column_groups input:first-of-type") page.click("text=View Settings") select_value(page, "#graph_type", "table") page.fill("#limit", "50") page.evaluate("g => { groupBy.chips = ['name']; groupBy.renderChips(); }") select_value(page, "#table", "extra") page.wait_for_function("document.querySelector('#table').value === 'extra'") assert page.input_value("#graph_type") == "samples" assert page.input_value("#limit") == "100" chips = page.evaluate("groupBy.chips.length") assert chips == 0 page.click("text=Columns") page.wait_for_selector("#column_groups input", state="attached") count = page.evaluate( "document.querySelectorAll('#column_groups input:checked').length" ) assert count == 3
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '80,160p' tests/test_multi_table_ web.py

The table view data doesn't align with headers. I'll check tests/test_web_table.py for more details.

shell
from tests.web_utils import run_query, select_value @pytest.fixture() def test_dataset_server_url() -> Iterator[str]: app = create_app("TEST") httpd = make_server("127.0.0.1", 0, app) port = httpd.server_port thread = threading.Thread(target=httpd.serve_forever) thread.start() try: yield f"http://127.0.0.1:{port}" finally: httpd.shutdown() thread.join() def test_table_sorting(page: Any, server_url: str) -> None: run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="user", order_dir="ASC", limit=100, ) # header alignment align = page.evaluate( "getComputedStyle(document.querySelector('#results th')).textAlign" ) assert align == "left" header = page.locator("#results th").nth(3) def values() -> list[str]: return page.locator("#results td:nth-child(4)").all_inner_texts() orig_rows = values() assert orig_rows == ["alice", "bob", "alice", "charlie"] first_sql = page.evaluate("window.lastResults.sql") header.click() assert values() == sorted(orig_rows) assert header.inner_text().endswith("▲") color = page.evaluate( "getComputedStyle(document.querySelector('#results th:nth-child(4)')).co lor" ) assert "0, 0, 255" in color assert page.evaluate("window.lastResults.sql") == first_sql header.click() assert values() == sorted(orig_rows, reverse=True) assert header.inner_text().endswith("▼") header.click() assert values() == orig_rows assert header.inner_text() == "user" color = page.evaluate( "getComputedStyle(document.querySelector('#results th:nth-child(4)')).co lor" ) assert "0, 0, 255" not in color def test_table_avg_group_by(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="timestamp", group_by=["user"], aggregate="Avg", ) assert "error" not in data assert len(data["rows"]) == 3 def test_table_enhancements(page: Any, server_url: str) -> None: run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="timestamp", limit=10, ) border = page.evaluate( "getComputedStyle(document.querySelector('#results td')).borderStyle" ) assert border == "solid" color1 = page.evaluate( "getComputedStyle(document.querySelector('#results tr:nth-child(2) td')) .backgroundColor" ) color2 = page.evaluate( "getComputedStyle(document.querySelector('#results tr:nth-child(3) td')) .backgroundColor" ) assert color1 != color2 page.hover("#results tr:nth-child(2)") hover_color = page.evaluate( "getComputedStyle(document.querySelector('#results tr:nth-child(2) td')) .backgroundColor" ) assert hover_color != color1 page.click("#results tr:nth-child(2)") selected_color = page.evaluate( "getComputedStyle(document.querySelector('#results tr:nth-child(2) td')) .backgroundColor" ) assert "189, 228, 255" in selected_color overflow = page.evaluate( "var v=document.getElementById('view'); v.scrollWidth > v.clientWidth" ) assert not overflow def test_table_single_selection(page: Any, server_url: str) -> None: run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="timestamp", limit=10, ) page.click("#results tr:nth-child(2)") page.click("#results tr:nth-child(3)") count = page.evaluate("document.querySelectorAll('#results tr.selected').len gth") assert count == 1 is_third = page.evaluate( "document.querySelector('#results tr:nth-child(3)').classList.contains(' selected')" ) assert is_third def test_timestamp_rendering(page: Any, server_url: str) -> None: run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-02 00:00:00", order_by="timestamp", limit=1, ) cell = page.text_content("#results td") assert cell != "Invalid Date" valid = page.evaluate("v => !isNaN(Date.parse(v))", cell) assert valid def test_empty_data_message(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2025-01-01 00:00:00", end="2025-01-02 00:00:00", order_by="timestamp", limit=100, ) assert data["rows"] == [] msg = page.text_content("#view") assert "Empty data provided to table" in msg def test_group_by_chip_from_url(page: Any, server_url: str) -> None: url = f"{server_url}?graph_type=table&group_by=user&order_by=user&limit=10" page.goto(url) page.wait_for_selector("#group_by_field .chip", state="attached") chips = page.evaluate( "Array.from(document.querySelectorAll('#group_by_field .chip')).map(c => c.firstChild.textContent)" ) assert chips == ["user"] def test_group_by_autocomplete(page: Any, server_url: str) -> None: page.goto(f"{server_url}?graph_type=table") page.wait_for_selector("#group_by_field", state="visible") inp = page.query_selector("#group_by_field .f-val") assert inp inp.click() page.keyboard.type("us") page.wait_for_selector("#group_by_field .chip-dropdown div") options = page.locator("#group_by_field .chip-dropdown div").all_inner_texts () assert "user" in options def test_group_by_copy_icon(page: Any, server_url: str) -> None: page.goto(f"{server_url}?graph_type=table") page.wait_for_selector("#group_by_field", state="visible") icon = page.text_content("#group_by_field .chip-copy") assert icon == "⎘" def test_group_by_input_no_border(page: Any, server_url: str) -> None: page.goto(f"{server_url}?graph_type=table") page.wait_for_selector("#group_by_field", state="visible") border = page.evaluate( "getComputedStyle(document.querySelector('#group_by_field .f-val')).bord erStyle" ) assert border == "none" def test_table_group_by_query(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-03 00:00:00", order_by="user", limit=100, group_by=["user"], aggregate="Count", ) assert "error" not in data assert len(data["rows"]) == 3 def test_table_avg_no_group_by(page: Any, server_url: str) -> None: data = run_query( page, server_url, aggregate="Avg", order_by="timestamp", ) assert len(data["rows"]) == 1 row = data["rows"][0]

I'll continue scrolling past line 240 to gather more details.

shell
def test_table_headers_show_aggregate(page: Any, server_url: str) -> None: run_query( page, server_url, aggregate="Avg", order_by="timestamp", ) headers = page.locator("#results th").all_inner_texts() assert "Hits" in headers assert "timestamp (avg)" in headers assert "value (avg)" in headers def test_format_number_function(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") vals = page.evaluate( "() => [formatNumber(815210), formatNumber(999.999), formatNumber(0.0004 ), formatNumber(0)]" ) assert vals == ["815.21 K", "999.999", "0.000", "0"] def test_numeric_cell_nowrap(page: Any, server_url: str) -> None: run_query(page, server_url, order_by="timestamp", limit=10) whitespace = page.evaluate( "getComputedStyle(document.querySelector('#results td:nth-child(3)')).wh iteSpace" ) assert whitespace == "nowrap" def test_date_cell_nowrap(page: Any, server_url: str) -> None: run_query(page, server_url, order_by="timestamp", limit=10) whitespace = page.evaluate( "getComputedStyle(document.querySelector('#results td:nth-child(1)')).wh iteSpace" ) assert whitespace == "nowrap" def test_derived_column_query(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") select_value(page, "#order_by", "timestamp") page.click("text=Columns") page.click("text=Add Derived") expr = page.query_selector("#derived_list .derived textarea") assert expr expr.fill("value * 2") page.click("text=View Settings") page.fill("#start", "2024-01-01 00:00:00") page.fill("#end", "2024-01-03 00:00:00") page.fill("#limit", "10") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") data = page.evaluate("window.lastResults") assert data["rows"][0][-1] == 20 def test_derived_column_remove(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#order_by option", state="attached") page.click("text=Columns") page.click("text=Add Derived") assert page.query_selector("#derived_list .derived button.remove") page.click("#derived_list .derived button.remove") count = page.evaluate("document.querySelectorAll('#derived_list .derived').l ength") assert count == 0 def test_sql_query_display(page: Any, server_url: str) -> None: data = run_query( page, server_url, start="2024-01-01 00:00:00", end="2024-01-02 00:00:00", order_by="timestamp", limit=10, ) sql = data["sql"] displayed = page.text_content("#sql_query") assert displayed is not None assert displayed.strip() == sql def test_table_count_no_columns(page: Any, test_dataset_server_url: str) -> None : page.goto(test_dataset_server_url) page.wait_for_selector("#order_by option", state="attached") select_value(page, "#graph_type", "table") page.click("text=Columns") page.click("#columns_all") page.click("text=View Settings") page.evaluate("groupBy.chips = ['id']; groupBy.renderChips();") select_value(page, "#aggregate", "Count") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") headers = page.locator("#results th").all_inner_texts() assert headers == ["id", "Hits"] col_count = page.locator("#results th").count() row_count = page.locator("#results tr").count() assert col_count == 2 assert row_count == 3 overflow = page.evaluate( "var v=document.getElementById('view'); v.scrollWidth > v.clientWidth" ) assert not overflow

I’m passing over additional lines to explore the group_by section and possible extra tables.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '480,960p' tests/test_web_table.p y

I'll check the tests/test_web_graph file for any timeseries, starting from line 0.

shell
root@3f0164aeb2f9:/workspace/scubaduck# ls tests | grep web test_multi_table_web.py test_web.py test_web_basics.py test_web_chips.py test_web_columns.py test_web_graph.py test_web_table.py test_web_timeseries.py web_utils.py

I'll open tests/web_utils.py to check out how run_query is defined.

shell
from typing import Any def select_value(page: Any, selector: str, value: str) -> None: page.evaluate( "arg => setSelectValue(arg.sel, arg.val)", {"sel": selector, "val": value}, ) def run_query( page: Any, url: str, *, start: str | None = None, end: str | None = None, order_by: str | None = None, order_dir: str | None = "ASC", limit: int | None = None, group_by: list[str] | None = None, aggregate: str | None = None, ) -> dict[str, Any]: page.goto(url) page.wait_for_selector("#order_by option", state="attached") page.wait_for_selector("#order_dir", state="attached") page.wait_for_function("window.lastResults !== undefined") if start is not None: page.fill("#start", start) if end is not None: page.fill("#end", end) if order_by is not None: select_value(page, "#order_by", order_by) if order_dir is not None and order_dir == "DESC": page.click("#order_dir") if limit is not None: page.fill("#limit", str(limit)) if group_by is not None: select_value(page, "#graph_type", "table") page.evaluate( "g => { groupBy.chips = g; groupBy.renderChips(); }", group_by, ) if aggregate is not None: select_value(page, "#graph_type", "table") select_value(page, "#aggregate", aggregate) if page.input_value("#graph_type") != "samples": page.click("text=Columns") page.wait_for_selector("#column_groups input", state="attached") if not page.is_checked("#column_groups input[value='value']"): page.check("#column_groups input[value='value']") order_col = order_by or page.input_value("#order_by") if order_col and not page.is_checked( f"#column_groups input[value='{order_col}']" ): if page.query_selector(f"#column_groups input[value='{order_col}']") : page.check(f"#column_groups input[value='{order_col}']") page.click("text=View Settings") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") return page.evaluate("window.lastResults")

Trying to fix misalignment issue when aggregating by 'num' in the TEST dataset.

shell
root@3f0164aeb2f9:/workspace/scubaduck# grep -n "extra" -n tests/test_server_tim eseries.py 257: "table": "extra",

I'll check those specific lines closely to see what's going on.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '248,270p' tests/test_server_time series.py assert rv.status_code == 200 rows = data["rows"] assert all(r[3] == r[2] * 2 for r in rows) def test_reserved_word_column() -> None: app = server.create_app("TEST") client = app.test_client() payload = { "table": "extra", "columns": ["ts", "desc"], "order_by": "ts", "time_column": "", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 2 assert data["rows"][0][1] == "x"

I’ll check tests/test_web_table for extra tables and search for 'test_dataset_server_url'.

shell
_table.py 16:def test_dataset_server_url() -> Iterator[str]: 333:def test_table_count_no_columns(page: Any, test_dataset_server_url: str) -> None: 334: page.goto(test_dataset_server_url)

I’ll search for "extra" in test files to investigate if there are relevant tests.

shell
root@3f0164aeb2f9:/workspace/scubaduck# grep -n "extra" -n tests/test_web_table. py

I'll look for additional tests to explore.

shell
root@3f0164aeb2f9:/workspace/scubaduck# grep -n "reserved_word" -r tests tests/test_server_timeseries.py:253:def test_reserved_word_column() -> None:

The bug is likely from improper column handling when grouping by 'num' and aggregating with count.

shell
root@3f0164aeb2f9:/workspace/scubaduck# grep -n "show_hits" -n scubaduck/server. py 46: show_hits: bool = False 510: show_hits=payload.get("show_hits", False), 535: params.group_by or params.aggregate or params.show_hits 540: "error": "group_by, aggregate and show_hits are only valid for table or timeseries view"

I'll search for 'Hits' to confirm if there's filtering with show_hits set to false.

shell
307: select_parts.insert(len(group_cols), "count(*) AS Hits") 308: selected_for_order.add("Hits") 315: order_by = "Hits" 519: params.order_by = "Hits" 548: valid_cols.add("Hits")

Let me review the code around line 519 to understand it better.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '512,562p' scubaduck/server.py granularity=payload.get("granularity", "Auto"), fill=payload.get("fill", "0"), table=payload.get("table", default_table), time_column=payload.get("time_column", "timestamp"), time_unit=payload.get("time_unit", "s"), ) if params.order_by == "Samples": params.order_by = "Hits" for f in payload.get("filters", []): params.filters.append(Filter(f["column"], f["op"], f.get("value"))) if params.table not in tables: return jsonify({"error": "Invalid table"}), 400 column_types = get_columns(params.table) if params.time_column and params.time_column not in column_types: return jsonify({"error": "Invalid time_column"}), 400 if params.time_unit not in {"s", "ms", "us", "ns"}: return jsonify({"error": "Invalid time_unit"}), 400 if params.graph_type not in {"table", "timeseries"} and ( params.group_by or params.aggregate or params.show_hits ): return ( jsonify( { "error": "group_by, aggregate and show_hits are only val id for table or timeseries view" } ), 400, ) valid_cols = set(column_types.keys()) valid_cols.update(params.derived_columns.keys()) valid_cols.add("Hits") if params.graph_type == "timeseries": if params.x_axis is None: params.x_axis = params.time_column if params.x_axis is None or params.x_axis not in valid_cols: return jsonify({"error": "Invalid x_axis"}), 400 ctype = column_types.get(params.x_axis, "").upper() is_time = any(t in ctype for t in ["TIMESTAMP", "DATE", "TIME"]) is_numeric = any( t in ctype for t in [ "INT", "DECIMAL", "REAL", "DOUBLE",

I'm looking back around line 315 for further details.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '300,318p' scubaduck/server.py selected_for_order.add("Count") else: for col in params.columns: if col in group_cols: continue select_parts.append(f"{agg_expr(col)} AS {_quote(col)}") selected_for_order.add(col) select_parts.insert(len(group_cols), "count(*) AS Hits") selected_for_order.add("Hits") else: select_parts.extend(_quote(c) for c in params.columns) selected_for_order.update(params.columns) order_by = params.order_by if order_by == "Samples": order_by = "Hits" order_by = order_by if order_by in selected_for_order else None if has_agg and params.derived_columns:

I'm rethinking how the query should show results depending on the aggregator used. Let's check the tests for test_table_count.

shell
root@3f0164aeb2f9:/workspace/scubaduck# grep -n "table_count" -r tests | head -n 20 tests/test_web_table.py:333:def test_table_count_no_columns(page: Any, test_data set_server_url: str) -> None:

I saw the test earlier with the aggregator count, looks like "Hits" is the only column shown.

shell
y page, server_url, start="2024-01-01 00:00:00", end="2024-01-02 00:00:00", order_by="timestamp", limit=10, ) sql = data["sql"] displayed = page.text_content("#sql_query") assert displayed is not None assert displayed.strip() == sql def test_table_count_no_columns(page: Any, test_dataset_server_url: str) -> None : page.goto(test_dataset_server_url) page.wait_for_selector("#order_by option", state="attached") select_value(page, "#graph_type", "table") page.click("text=Columns") page.click("#columns_all") page.click("text=View Settings") page.evaluate("groupBy.chips = ['id']; groupBy.renderChips();") select_value(page, "#aggregate", "Count") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") headers = page.locator("#results th").all_inner_texts() assert headers == ["id", "Hits"] col_count = page.locator("#results th").count() row_count = page.locator("#results tr").count() assert col_count == 2 assert row_count == 3 overflow = page.evaluate( "var v=document.getElementById('view'); v.scrollWidth > v.clientWidth" ) assert not overflow

The query appends "count(*) AS Count" for aggregation but only returns "id, Hits" in tests.

run_query automatically selects the "value" column, but manual calls might override that.

shell
root@3f0164aeb2f9:/workspace/scubaduck# ls scubaduck/static/js chip_input.js table_view.js timeseries_chart.js sidebar.js time_column.js view_settings.js

Time to open up table_view.js and dig into what’s going on there!

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '1,200p' scubaduck/static/js/tabl e_view.js // Logic for rendering the table based views. Extracted from index.html so that // the inline script only handles wiring up the UI. let originalRows = []; let sortState = { index: null, dir: null }; function renderTable(rows) { const table = document.getElementById("results"); table.innerHTML = ""; if (rows.length === 0) return; let hitsIndex = selectedColumns.indexOf("Hits"); let totalHits = 0; if (hitsIndex !== -1) { totalHits = rows.reduce((s, r) => s + Number(r[hitsIndex]), 0); } const header = document.createElement("tr"); selectedColumns.forEach((col, i) => { const th = document.createElement("th"); let label = col; if ( displayType === "table" && col !== "Hits" && !(groupBy.chips || []).includes(col) ) { const agg = document.getElementById("aggregate").value.toLowerCase(); label += ` (${agg})`; } th.textContent = label; th.dataset.index = i; th.addEventListener("click", handleSort); if (sortState.index === i) { th.classList.add("sorted"); th.textContent = label + (sortState.dir === "desc" ? " \u25BC" : " \u25B2" ); } th.style.textAlign = "left"; header.appendChild(th); }); table.appendChild(header); rows.forEach((row) => { const tr = document.createElement("tr"); tr.addEventListener("click", () => { const wasSelected = tr.classList.contains("selected"); document .querySelectorAll("#results tr.selected") .forEach((el) => el.classList.remove("selected")); if (!wasSelected) { tr.classList.add("selected"); } }); row.forEach((v, i) => { const col = selectedColumns[i]; const td = document.createElement("td"); if (isTimeColumn(col)) { let d; const t = (columnTypes[col] || "").toUpperCase(); if (t.includes("TIMESTAMP") || t.includes("DATE") || t.includes("TIME")) { d = new Date(v); } else { const unit = document.getElementById("time_unit").value; const factors = { s: 1000, ms: 1, us: 0.001, ns: 0.000001 }; d = new Date(Number(v) * (factors[unit] || 1000)); } td.textContent = d.toLocaleString("en-US", { weekday: "short", month: "short", day: "numeric", year: "numeric", hour: "numeric", minute: "numeric", second: "numeric", hour12: true, timeZoneName: "short", }); td.classList.add("date"); } else { if (col === "Hits") { const pct = totalHits ? ((v / totalHits) * 100).toFixed(1) : "0"; td.textContent = `${formatNumber(v)} (${pct}%)`; } else { td.textContent = isStringColumn(col) ? v : formatNumber(v); } } if (!isStringColumn(col) && !isTimeColumn(col)) { td.classList.add("numeric"); } td.style.textAlign = isStringColumn(col) ? "left" : "right"; tr.appendChild(td); }); table.appendChild(tr); }); // ensure table does not overflow unless necessary const view = document.getElementById("view"); if (table.scrollWidth <= view.clientWidth) { table.style.width = "100%"; } } function handleSort(e) { const idx = parseInt(e.target.dataset.index, 10); if (sortState.index !== idx) { sortState.index = idx; sortState.dir = "asc"; } else if (sortState.dir === "asc") { sortState.dir = "desc"; } else if (sortState.dir === "desc") { sortState.index = null; sortState.dir = null; } else { sortState.dir = "asc"; } let rows = originalRows.slice(); if (sortState.index !== null) { rows.sort((a, b) => { const va = a[sortState.index]; const vb = b[sortState.index]; if (va === vb) return 0; if (sortState.dir === "desc") return va < vb ? 1 : -1; return va > vb ? 1 : -1; }); } renderTable(rows); } function showResults(data) { window.lastResults = data; const hideHits = (graphTypeSel.value === "table" || graphTypeSel.value === "timeseries") && !document.getElementById("show_hits").checked; if (hideHits && data.rows.length) { const groupCount = (graphTypeSel.value === "timeseries" ? 1 : 0) + ((groupBy.chips || []).length || 0); data.rows.forEach((r) => r.splice(groupCount, 1)); } const view = document.getElementById("view"); if (graphTypeSel.value === "timeseries") { showTimeSeries(data); } else { if (data.rows.length === 0) { view.innerHTML = '<p id="empty-message">Empty data provided to table</p><table id="result s"></table>'; } else { view.innerHTML = '<table id="results"></table>'; } originalRows = data.rows.slice(); sortState = { index: null, dir: null }; renderTable(originalRows); } const sqlEl = document.createElement("pre"); sqlEl.id = "sql_query"; sqlEl.style.whiteSpace = "pre-wrap"; sqlEl.style.marginTop = "10px"; sqlEl.textContent = data.sql; view.appendChild(sqlEl); document.getElementById("query_info").textContent = `Your query took about ${l astQueryTime} ms`; } function showError(err) { window.lastResults = err; const view = document.getElementById("view"); let msg = ""; if (typeof err === "string") { msg = err; } else if (err) { msg = err.error || "Error"; if (err.sql) { msg += "\nSQL: " + err.sql; } if (err.traceback) { msg += "\n" + err.traceback; } } view.innerHTML = `<pre id="error-message">${msg}</pre>`; document.getElementById("query_info").textContent = ""; }

The showResults function removes the Hits column if unchecked. I should check selectedColumns earlier.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '1,200p' scubaduck/static/js/side bar.js // Sidebar resizing logic extracted from index.html const sidebar = document.getElementById('sidebar'); const sidebarResizer = document.getElementById('sidebar-resizer'); let sidebarWidth = parseInt(localStorage.getItem('sidebarWidth') || 450, 10); sidebar.style.width = sidebarWidth + 'px'; let sidebarResize = false; function startSidebarDrag(e) { e.preventDefault(); sidebarResize = true; document.addEventListener('mousemove', onSidebarDrag); document.addEventListener('mouseup', stopSidebarDrag); } function onSidebarDrag(e) { if (!sidebarResize) return; sidebarWidth = Math.max(200, e.clientX - sidebar.getBoundingClientRect().left) ; sidebar.style.width = sidebarWidth + 'px'; } function stopSidebarDrag() { document.removeEventListener('mousemove', onSidebarDrag); document.removeEventListener('mouseup', stopSidebarDrag); sidebarResize = false; localStorage.setItem('sidebarWidth', sidebarWidth); } sidebarResizer.addEventListener('mousedown', startSidebarDrag);

I’m going to open view_settings.js to work on building the query.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '1,200p' scubaduck/static/js/view _settings.js // Logic for View Settings, Columns, and URL handling extracted from index.html const allColumns = []; const baseColumns = []; const columnTypes = {}; const stringColumns = []; const baseStringColumns = []; const integerColumns = []; const baseIntegerColumns = []; const timeColumns = []; const baseTimeColumns = []; const timeColumnOptions = []; const baseTimeColumnOptions = []; const derivedColumns = []; let selectedColumns = []; let displayType = 'samples'; let groupBy = {chips: [], addChip: () => {}, renderChips: () => {}}; let defaultTimeColumn = ''; const limitInput = document.getElementById('limit'); const defaultLimit = parseInt(limitInput.value, 10); const limitValues = { samples: defaultLimit, table: defaultLimit, timeseries: 7 }; const columnValues = { samples: [], table: [], timeseries: [] }; limitInput.addEventListener('input', () => { limitValues[displayType] = parseInt(limitInput.value, 10); limitInput.dataset.setByUser = '1'; }); function initDropdown(select) { // Avoid creating duplicate wrappers if this dropdown was already initialised. if (select.dataset.dropdownInit) { const disp = select.parentElement?.querySelector('.dropdown-display'); if (disp) { const opt = select.options[select.selectedIndex]; disp.textContent = opt ? opt.textContent : ''; } return; } select.dataset.dropdownInit = '1'; const wrapper = document.createElement('div'); wrapper.className = 'dropdown'; if (select.classList.contains('f-col')) { wrapper.classList.add('f-col'); } select.parentNode.insertBefore(wrapper, select); wrapper.appendChild(select); select.style.display = 'none'; const disp = document.createElement('div'); disp.className = 'dropdown-display'; function updateDisplay() { const opt = select.options[select.selectedIndex]; disp.textContent = opt ? opt.textContent : ''; } updateDisplay(); wrapper.appendChild(disp); const menu = document.createElement('div'); menu.className = 'dropdown-menu'; const search = document.createElement('input'); search.placeholder = 'Search'; menu.appendChild(search); const list = document.createElement('div'); menu.appendChild(list); wrapper.appendChild(menu); function close() { menu.style.display = 'none'; } function open() { renderOptions(); menu.style.display = 'block'; search.focus(); } disp.addEventListener('click', () => { if (menu.style.display === 'block') { close(); } else { open(); } }); document.addEventListener('click', e => { if (!wrapper.contains(e.target)) { close(); } }); function renderOptions() { const q = search.value.toLowerCase(); list.innerHTML = ''; Array.from(select.options).forEach(o => { if (!o.textContent.toLowerCase().includes(q)) return; const div = document.createElement('div'); div.className = 'option'; if (q) { const text = o.textContent; const idx = text.toLowerCase().indexOf(q); if (idx !== -1) { div.innerHTML = text.slice(0, idx) + '<u>' + text.slice(idx, idx + q.length) + '</u>' + text.slice(idx + q.length); } else { div.textContent = text; } } else { div.textContent = o.textContent; } if (o.value === select.value) div.classList.add('selected'); div.addEventListener('mousedown', evt => { evt.preventDefault(); select.value = o.value; select.dispatchEvent(new Event('change')); updateDisplay(); close(); }); list.appendChild(div); }); } search.addEventListener('input', renderOptions); select.addEventListener('change', updateDisplay); } let orderDir = 'ASC'; const orderDirBtn = document.getElementById('order_dir'); const graphTypeSel = document.getElementById('graph_type'); function updateOrderDirButton() { orderDirBtn.textContent = orderDir + (orderDir === 'ASC' ? ' \u25B2' : ' \u25B C'); } function updateDisplayTypeUI() { const prevType = displayType; updateSelectedColumns(prevType); const newType = graphTypeSel.value; const showTable = newType === 'table'; const showTS = newType === 'timeseries'; document.getElementById('group_by_field').style.display = showTable || showTS ? 'flex' : 'none'; document.getElementById('aggregate_field').style.display = showTable || showTS ? 'flex' : 'none'; document.getElementById('show_hits_field').style.display = showTable ? 'flex' : 'none'; document.getElementById('x_axis_field').style.display = showTS ? 'flex' : 'non e'; document.getElementById('granularity_field').style.display = showTS ? 'flex' : 'none'; document.getElementById('fill_field').style.display = showTS ? 'flex' : 'none' ; document.querySelectorAll('#column_groups .col-group').forEach(g => { if (g.querySelector('.col-group-header').textContent.startsWith('Strings')) { g.style.display = showTable || showTS ? 'none' : ''; } }); limitValues[prevType] = parseInt(limitInput.value, 10); if (showTS && limitValues.timeseries === undefined) { limitValues.timeseries = 7; } limitInput.value = limitValues[newType]; document.querySelectorAll('#column_groups input').forEach(cb => { cb.checked = columnValues[newType].includes(cb.value); }); if (showTS) { document.querySelectorAll('#column_groups input').forEach(cb => { if (isTimeColumn(cb.value) || isStringColumn(cb.value)) { cb.checked = false; } }); document.getElementById('order_by').value = ''; } updateSelectedColumns(newType); displayType = newType; } function updateTimeFieldVisibility() { const show = document.getElementById('time_column').value !== ''; document.getElementById('start').closest('.field').style.display = show ? 'flex' : 'none'; document.getElementById('end').closest('.field').style.display = show ? 'flex' : 'none'; document.getElementById('time_unit').style.display = show ? '' : 'none'; } orderDirBtn.addEventListener('click', () => { orderDir = orderDir === 'ASC' ? 'DESC' : 'ASC'; updateOrderDirButton(); }); updateOrderDirButton(); graphTypeSel.addEventListener('change', updateDisplayTypeUI); document.getElementById('time_column').addEventListener('change', updateTimeFiel dVisibility); updateTimeFieldVisibility(); function loadColumns(table) { return fetch('/api/columns?table=' + encodeURIComponent(table)).then(r => r.js on()).then(cols => { const orderSelect = document.getElementById('order_by'); const xAxisSelect = document.getElementById('x_axis');

I'm searching for functions related to "selectedColumns" to understand their computation.

shell
root@3f0164aeb2f9:/workspace/scubaduck# grep -n "selectedColumns" -n scubaduck/s tatic/js/* scubaduck/static/js/table_view.js:11: let hitsIndex = selectedColumns.indexOf(" Hits"); scubaduck/static/js/table_view.js:17: selectedColumns.forEach((col, i) => { scubaduck/static/js/table_view.js:51: const col = selectedColumns[i]; scubaduck/static/js/timeseries_chart.js:38: const valueCols = selectedColumns.s lice(groups.length + hasHits); scubaduck/static/js/view_settings.js:15:let selectedColumns = []; scubaduck/static/js/view_settings.js:447: selectedColumns = groupBy.chips.sli ce(); scubaduck/static/js/view_settings.js:448: if (document.getElementById('show_h its').checked) selectedColumns.push('Hits'); scubaduck/static/js/view_settings.js:452: if (!selectedColumns.includes(c )) selectedColumns.push(c); scubaduck/static/js/view_settings.js:455: if (dc.include && !selectedColu mns.includes(dc.name)) selectedColumns.push(dc.name); scubaduck/static/js/view_settings.js:459: selectedColumns = base.slice(); scubaduck/static/js/view_settings.js:461: if (dc.include) selectedColumns.p ush(dc.name); scubaduck/static/js/view_settings.js:464: columnValues[type] = selectedColumns. slice(); scubaduck/static/js/view_settings.js:466: if (orderCol && !selectedColumns.incl udes(orderCol)) { scubaduck/static/js/view_settings.js:467: selectedColumns.push(orderCol); scubaduck/static/js/view_settings.js:702: columns: selectedColumns.filter(c = >

I'll skip to around line 447 to check out the relevant section.

shell
ew_settings.js }); function updateColumnsTabCount() { const baseCount = document.querySelectorAll('#column_groups input:checked').le ngth; const derivedCount = document.querySelectorAll('#derived_list .derived .d-use: checked').length; const btn = document.getElementById('columns_tab'); if (btn) btn.textContent = `Columns (${baseCount + derivedCount})`; } function updateSelectedColumns(type = graphTypeSel.value) { const base = allColumns.filter(name => { const cb = document.querySelector(`#column_groups input[value="${name}"]`); if (!cb || !cb.checked) return false; if (type === 'table' && isStringColumn(name)) return false; return true; }); if (type === 'table' || type === 'timeseries') { selectedColumns = groupBy.chips.slice(); if (document.getElementById('show_hits').checked) selectedColumns.push('Hits '); const agg = document.getElementById('aggregate').value.toLowerCase(); if (!(type === 'table' && agg === 'count')) { base.forEach(c => { if (!selectedColumns.includes(c)) selectedColumns.push(c); }); derivedColumns.forEach(dc => { if (dc.include && !selectedColumns.includes(dc.name)) selectedColumns.pu sh(dc.name); }); } } else { selectedColumns = base.slice(); derivedColumns.forEach(dc => { if (dc.include) selectedColumns.push(dc.name); }); } columnValues[type] = selectedColumns.slice(); const orderCol = document.getElementById('order_by').value; if (orderCol && !selectedColumns.includes(orderCol)) { selectedColumns.push(orderCol); } updateColumnsTabCount(); } function isStringColumn(name) { const t = (columnTypes[name] || '').toUpperCase(); return t.includes('CHAR') || t.includes('STRING') || t.includes('VARCHAR'); } function isIntegerColumn(name) { const t = (columnTypes[name] || '').toUpperCase(); return t.includes('INT'); } function isTimeColumn(name) { const t = (columnTypes[name] || '').toUpperCase(); if (t.includes('TIMESTAMP') || t.includes('DATE') || t.includes('TIME')) retur n true; const sel = document.getElementById('time_column').value; const xsel = document.getElementById('x_axis').value; if (name === sel || name === xsel) return true; return false; } function formatNumber(val) { if (typeof val !== 'number') val = Number(val); if (Number.isNaN(val)) return ''; if (val === 0) return '0'; const abs = Math.abs(val); if (abs > 999.999) { const units = [ {n: 1e12, s: 'T'}, {n: 1e9, s: 'B'}, {n: 1e6, s: 'M'}, {n: 1e3, s: 'K'}, ]; for (const u of units) { if (abs >= u.n) { return (val / u.n).toFixed(2) + ' ' + u.s; } } } if (abs < 0.0005) return '0.000'; if (Number.isInteger(val)) return val.toString(); return val.toFixed(3); } function addFilter() { const container = document.createElement('div'); container.className = 'filter'; container.innerHTML = ` <div class="filter-row"> <select class="f-col"></select> <select class="f-op"></select> <button type="button" class="remove" onclick="this.closest('.filter').remo ve()">✖</button> </div> <div class="chip-box"> <div class="chip-input"> <input class="f-val" type="text"> <button type="button" class="chip-copy">&#x2398;</button> </div> <div class="chip-dropdown"></div> </div> `; const colSel = container.querySelector('.f-col'); colSel.innerHTML = allColumns.map(c => `<option value="${c}">${c}</option>`).j oin(''); initDropdown(colSel); function populateOps() { const opSel = container.querySelector('.f-op'); const col = colSel.value; const ops = isStringColumn(col) ? [ ['=', '='], ['!=', '!='], ['~', 'matches regex'], ['!~', 'not matches regex'], ['contains', 'contains'], ... > <textarea class="d-expr" rows="2"></textarea> `; document.getElementById('derived_list').appendChild(container); const obj = { type: data.type || 'string', name: data.name || nextDerivedName(), expr: data.expr || '', include: data.include !== undefined ? data.include : true, el: container }; container.querySelector('.d-type').value = obj.type; container.querySelector('.d-name').value = obj.name; container.querySelector('.d-expr').value = obj.expr; container.querySelector('.d-use').checked = obj.include; ['change','input'].forEach(evt => { container.addEventListener(evt, refreshDerivedColumns); }); derivedColumns.push(obj); refreshDerivedColumns(); } function removeDerived(btn) { const el = btn.closest('.derived'); const idx = derivedColumns.findIndex(d => d.el === el); if (idx !== -1) { derivedColumns.splice(idx, 1); } el.remove(); refreshDerivedColumns(); } function refreshDerivedColumns() { allColumns.splice(0, allColumns.length, ...baseColumns); stringColumns.splice(0, stringColumns.length, ...baseStringColumns); integerColumns.splice(0, integerColumns.length, ...baseIntegerColumns); timeColumns.splice(0, timeColumns.length, ...baseTimeColumns); timeColumnOptions.splice(0, timeColumnOptions.length, ...baseTimeColumnOptions ); derivedColumns.forEach(d => { d.type = d.el.querySelector('.d-type').value; d.name = d.el.querySelector('.d-name').value; d.expr = d.el.querySelector('.d-expr').value; d.include = d.el.querySelector('.d-use').checked; allColumns.push(d.name); columnTypes[d.name] = d.type; if (d.type === 'string') { stringColumns.push(d.name); } else { integerColumns.push(d.name); timeColumnOptions.push(d.name); } }); updateSelectedColumns(); } let lastQueryTime = 0; let queryStart = 0; function dive(push=true) { const params = collectParams(); if (push) { history.pushState(params, '', paramsToSearch(params)); } const payload = Object.assign({}, params); const dcMap = {}; (params.derived_columns || []).forEach(d => { if (d.include) dcMap[d.name] = d.expr; }); payload.derived_columns = dcMap; const view = document.getElementById('view'); view.innerHTML = '<p>Loading...</p>'; window.lastResults = undefined; queryStart = performance.now(); fetch('/api/query', {method:'POST', headers:{'Content-Type':'application/json' }, body:JSON.stringify(payload)}) .then(async r => { const data = await r.json(); if (!r.ok) throw data; return data; }) .then(data => { lastQueryTime = Math.round(performance.now() - queryStart); showResults(data); }) .catch(err => { showError(err); }); } function collectParams() { updateSelectedColumns(); const payload = { table: document.getElementById('table').value, time_column: document.getElementById('time_column').value, time_unit: document.getElementById('time_unit').value, start: document.getElementById('start').value, end: document.getElementById('end').value, order_by: document.getElementById('order_by').value, order_dir: orderDir, limit: parseInt(document.getElementById('limit').value, 10), columns: selectedColumns.filter(c => c !== 'Hits' && !derivedColumns.some(dc => dc.name === c) ), samples_columns: columnValues.samples.slice(), table_columns: columnValues.table.slice(), timeseries_columns: columnValues.timeseries.slice(), graph_type: graphTypeSel.value, filters: Array.from(document.querySelectorAll('#filters .filter')).map(f => { const chips = f.chips || []; const op = f.querySelector('.f-op').value; let value = null; if (op !== 'empty' && op !== '!empty') { value = chips.length === 0 ? null : (chips.length === 1 ? chips[0] : chi ps); } const colSel = f.querySelector('.f-col select') || f.querySelector('.f-col '); return {column: colSel.value, op, value}; }), derived_columns: Array.from(document.querySelectorAll('#derived_list .derive d')).map(d => ({ type: d.querySelector('.d-type').value,

I’m continuing to scroll to line 702 to check the details.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '720,768p' scubaduck/static/js/vi ew_settings.js type: d.querySelector('.d-type').value, name: d.querySelector('.d-name').value, expr: d.querySelector('.d-expr').value, include: d.querySelector('.d-use').checked, })) }; if (graphTypeSel.value === 'table' || graphTypeSel.value === 'timeseries') { payload.group_by = groupBy.chips || []; payload.aggregate = document.getElementById('aggregate').value; payload.show_hits = document.getElementById('show_hits').checked; } if (graphTypeSel.value === 'timeseries') { const xval = document.getElementById('x_axis').value; if (xval) payload.x_axis = xval; payload.granularity = document.getElementById('granularity').value; payload.fill = document.getElementById('fill').value; } return payload; } function paramsToSearch(params) { const sp = new URLSearchParams(); if (params.table) sp.set('table', params.table); if (params.time_column) sp.set('time_column', params.time_column); if (params.time_unit) sp.set('time_unit', params.time_unit); if (params.start) sp.set('start', params.start); if (params.end) sp.set('end', params.end); if (params.order_by) sp.set('order_by', params.order_by); if (params.order_dir) sp.set('order_dir', params.order_dir); if (params.limit !== null && params.limit !== undefined) sp.set('limit', param s.limit); if (params.samples_columns && params.samples_columns.length) sp.set('samples_c olumns', params.samples_columns.join(',')); if (params.table_columns && params.table_columns.length) sp.set('table_columns ', params.table_columns.join(',')); if (params.timeseries_columns && params.timeseries_columns.length) sp.set('tim eseries_columns', params.timeseries_columns.join(',')); if (params.filters && params.filters.length) sp.set('filters', JSON.stringify( params.filters)); if (params.derived_columns && params.derived_columns.length) sp.set('derived_c olumns', JSON.stringify(params.derived_columns)); if (params.graph_type) sp.set('graph_type', params.graph_type); if (params.graph_type === 'table' || params.graph_type === 'timeseries') { if (params.group_by && params.group_by.length) sp.set('group_by', params.gro up_by.join(',')); if (params.aggregate) sp.set('aggregate', params.aggregate); if (params.show_hits) sp.set('show_hits', '1'); } if (params.graph_type === 'timeseries') { if (params.x_axis) sp.set('x_axis', params.x_axis); if (params.granularity) sp.set('granularity', params.granularity); if (params.fill) sp.set('fill', params.fill); } const qs = sp.toString(); return qs ? '?' + qs : ''; }

In updateSelectedColumns, base columns are excluded for the 'count' aggregator when the type is 'table'. The 'Hits' column only appears in selectedColumns if show_hits is checked. When show_hits is false, it won't appear in selectedColumns, but showResults will hide it from rows if needed.

There’s an extra column when "group_by num" and "aggregate count" are used. I'll check if 'show_hits' is unchecked by default in index.html.

shell
root@3f0164aeb2f9:/workspace/scubaduck# grep -n "show_hits" -n -r scubaduck/stat ic scubaduck/static/index.html:324: <div id="show_hits_field" class="field" style="display:none;"> scubaduck/static/index.html:326: <input id="show_hits" type="checkbox" checked> scubaduck/static/js/timeseries_chart.js:32: const hasHits = document.getElement ById('show_hits').checked ? 1 : 0; scubaduck/static/js/view_settings.js:150: document.getElementById('show_hits_fi eld').style.display = showTable ? 'flex' : 'none'; scubaduck/static/js/view_settings.js:448: if (document.getElementById('show_h its').checked) selectedColumns.push('Hits'); scubaduck/static/js/view_settings.js:729: payload.show_hits = document.getEle mentById('show_hits').checked; scubaduck/static/js/view_settings.js:759: if (params.show_hits) sp.set('show_ hits', '1'); scubaduck/static/js/view_settings.js:802: document.getElementById('show_hits'). checked = params.show_hits ?? true; scubaduck/static/js/view_settings.js:849: document.getElementById('show_hits'). checked = true; scubaduck/static/js/view_settings.js:892: if (sp.has('show_hits')) params.show_ hits = sp.get('show_hits') === '1'; scubaduck/static/js/table_view.js:128: !document.getElementById("show_hits"). checked;

It looks like index.html sets the show_hits checkbox to checked by default, so it's true.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '320,336p' scubaduck/static/index .html <option>p99.9</option> <option>p99.99</option> </select> </div> <div id="show_hits_field" class="field" style="display:none;"> <label>Show Hits</label> <input id="show_hits" type="checkbox" checked> </div> <div id="filters"> <h4>Filters<span class="help" title="You can create as many filters as you want. You can either write a filter using a UI or manual SQL. In the UI, fi lter consists of a column name, a relation (e.g., =, !=, <, >) and then a text f ield. The text field is a token input. It accepts multiple tokens for = relation , in which case we match using an OR for all options.">[?]</span></h4> <div id="filter_list"></div> <button id="add_filter" type="button" onclick="addFilter()">Add Filter </button> </div> <div id="query_info" style="margin-top:10px;"></div> </div> <div id="columns" class="tab-content"> <div id="column_actions">

When show_hits is checked, 'Hits' gets added, affecting query params and server response.

I'll investigate if isTimeColumn handles undefined values correctly to avoid errors.

shell
root@3f0164aeb2f9:/workspace/scubaduck# grep -n "function isTimeColumn" -n scuba duck/static/js/view_settings.js 482:function isTimeColumn(name) {
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '480,506p' scubaduck/static/js/vi ew_settings.js } function isTimeColumn(name) { const t = (columnTypes[name] || '').toUpperCase(); if (t.includes('TIMESTAMP') || t.includes('DATE') || t.includes('TIME')) retur n true; const sel = document.getElementById('time_column').value; const xsel = document.getElementById('x_axis').value; if (name === sel || name === xsel) return true; return false; } function formatNumber(val) { if (typeof val !== 'number') val = Number(val); if (Number.isNaN(val)) return ''; if (val === 0) return '0'; const abs = Math.abs(val); if (abs > 999.999) { const units = [ {n: 1e12, s: 'T'}, {n: 1e9, s: 'B'}, {n: 1e6, s: 'M'}, {n: 1e3, s: 'K'}, ]; for (const u of units) { if (abs >= u.n) { return (val / u.n).toFixed(2) + ' ' + u.s; }

It looks like isTimeColumn won't throw an error since it falls back to an empty string.

The issue lies in build_query adding "Count" when it shouldn't, leading to column misalignment.

shell
root@3f0164aeb2f9:/workspace/scubaduck# grep -n "Count" -r tests | head -n 20 tests/test_server_errors.py:59: "aggregate": "Count", tests/test_web_table.py:226: aggregate="Count", tests/test_web_table.py:341: select_value(page, "#aggregate", "Count") tests/test_server_time.py:67: "aggregate": "Count", tests/test_server_timeseries.py:71: "aggregate": "Count", tests/test_server_timeseries.py:143: "aggregate": "Count",

I'm reviewing lines around test_web_table and tests/test_server_timeseries for the aggregator count.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '60,80p' tests/test_server_timese ries.py def test_timeseries_basic() -> None: app = server.app client = app.test_client() payload: dict[str, Any] = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "limit": 100, "group_by": ["user"], "aggregate": "Count", "columns": ["value"], "x_axis": "timestamp", "granularity": "1 day", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200

I'm checking the next 80 lines to ensure I have the full information.

shell
eries.py assert rv.status_code == 200 assert len(data["rows"]) == 4 def test_timeseries_orders_by_xaxis() -> None: app = server.app client = app.test_client() payload: dict[str, Any] = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "limit": 100, "columns": ["value"], "x_axis": "timestamp", "granularity": "1 day", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 rows = data["rows"] from dateutil import parser timestamps = [parser.parse(r[0]).replace(tzinfo=None) for r in rows] assert timestamps == sorted(timestamps) def test_timeseries_count_no_columns() -> None: app = server.app client = app.test_client() payload: dict[str, Any] = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "granularity": "1 day", "columns": [], } rv = client.post(

I'm continuing to scroll down to capture the next set of lines.

shell
rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 rows = data["rows"] assert len(rows) == 2 assert rows[0][1] == 2 assert rows[1][1] == 2 assert len(rows[0]) == 3 def test_timeseries_limit_applies_to_series() -> None: app = server.app client = app.test_client() payload: dict[str, Any] = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "limit": 1, "order_by": "user", "group_by": ["user"], "aggregate": "Count", "columns": ["value"], "x_axis": "timestamp", "granularity": "1 day", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 2 assert all(r[1] == "alice" for r in data["rows"]) def test_timeseries_auto_and_fine_buckets() -> None: app = server.app client = app.test_client()

The test expects 3 columns: bucket, Hits, and one more. I’ll check further context.

shell
series.py def test_timeseries_count_no_columns() -> None: app = server.app client = app.test_client() payload: dict[str, Any] = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "granularity": "1 day", "columns": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 rows = data["rows"] assert len(rows) == 2 assert rows[0][1] == 2 assert rows[1][1] == 2 assert len(rows[0]) == 3 def test_timeseries_limit_applies_to_series() -> None: app = server.app client = app.test_client() payload: dict[str, Any] = { "table": "events",

Looking at the timeseries test, it expects three columns: bucket, Hits, and Count, but columns are empty. The server returns two columns because of the default aggregate "count". The test only expects the row length to be 3, without verifying column names.

I’m investigating if 'Count' should be removed to match the expected format in the tests.

shell
root@3f0164aeb2f9:/workspace/scubaduck# grep -n "len(rows[0])" -r tests/test_ser ver_timeseries.py

I'll check the test_web_timeseries.py file to verify if there’s anything else.

shell
s.py 57: assert path_zero is not None and path_zero.count("L") > 20 64: assert path_conn is not None and path_conn.count("M") == 1 71: assert path_blank is not None and path_blank.count("M") > 1 120: count = page.eval_on_selector_all("#crosshair_dots circle", "els => els. length") 121: assert count > 0 220: count = page.eval_on_selector_all("#chart path", "els => els.length") 221: assert count == 2 289: count = page.eval_on_selector_all("#chart text.tick-label", "els => els. length") 290: assert count > 2 304: count = page.eval_on_selector_all("#chart text.y-tick-label", "els => el s.length") 305: grid_count = page.eval_on_selector_all("#chart line.grid", "els => els.l ength") 306: assert count > 0 and count == grid_count

I'm skimming through about 350 lines of the file to check the features.

shell
from tests.web_utils import select_value def test_timeseries_default_query(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#graph_type", state="attached") select_value(page, "#graph_type", "timeseries") page.click("text=Columns") page.check("#column_groups input[value='value']") page.click("text=View Settings") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") data = page.evaluate("window.lastResults") assert "error" not in data assert page.is_visible("#chart") page.click("text=Columns") assert not page.is_checked("#column_groups input[value='timestamp']") def test_timeseries_single_bucket(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#graph_type", state="attached") page.fill("#start", "2024-01-01 00:00:00") page.fill("#end", "2024-01-01 00:00:00") select_value(page, "#graph_type", "timeseries") page.click("text=Columns") page.check("#column_groups input[value='value']") page.click("text=View Settings") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") path = page.get_attribute("#chart path", "d") assert path is not None and "NaN" not in path def test_timeseries_fill_options(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#graph_type", state="attached") page.fill("#start", "2024-01-01 00:00:00") page.fill("#end", "2024-01-02 03:00:00") select_value(page, "#graph_type", "timeseries") page.click("text=Columns") page.check("#column_groups input[value='value']") page.click("text=View Settings") select_value(page, "#granularity", "1 hour") select_value(page, "#fill", "0") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") path_zero = page.get_attribute("#chart path", "d") assert path_zero is not None and path_zero.count("L") > 20 select_value(page, "#fill", "connect") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") path_conn = page.get_attribute("#chart path", "d") assert path_conn is not None and path_conn.count("M") == 1 select_value(page, "#fill", "blank") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") path_blank = page.get_attribute("#chart path", "d") assert path_blank is not None and path_blank.count("M") > 1 def test_timeseries_hover_highlight(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#graph_type", state="attached") select_value(page, "#graph_type", "timeseries") page.click("text=Columns") page.check("#column_groups input[value='value']") page.click("text=View Settings") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") page.wait_for_selector("#chart path", state="attached") path_el = page.query_selector("#chart path") assert path_el page.evaluate( "el => el.dispatchEvent(new MouseEvent('mouseenter', {bubbles: true}))", path_el, ) width = page.evaluate( "getComputedStyle(document.querySelector('#chart path')).strokeWidth" ) assert "2.5" in width color = page.evaluate( "getComputedStyle(document.querySelector('#legend .legend-item')).backgr oundColor" ) assert "221, 221, 221" in color def test_timeseries_crosshair(page: Any, server_url: str) -> None: page.goto(server_url) page.wait_for_selector("#graph_type", state="attached") select_value(page, "#graph_type", "timeseries") page.click("text=Columns") page.check("#column_groups input[value='value']") page.click("text=View Settings") page.evaluate("window.lastResults = undefined") page.click("text=Dive") page.wait_for_function("window.lastResults !== undefined") page.wait_for_selector("#chart path", state="attached") page.eval_on_selector( "#chart", "el => { const r = el.getBoundingClientRect(); el.dispatchEvent(new Mous eEvent('mousemove', {clientX: r.left + r.width/2, clientY: r.top + r.height/2, b ubbles: true})); }", ) line_display = page.evaluate( "document.getElementById('crosshair_line').style.display" ) assert line_display != "none" count = page.eval_on_selector_all("#crosshair_dots circle", "els => els.leng th")

I'm checking the bottom of the file to find more tests.

shell
root@3f0164aeb2f9:/workspace/scubaduck# grep -n "no_columns" -n tests/test_web_t imeseries.py

I'm looking into timeseries_count_no_columns test and considering how the UI behaves with counts.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '1,160p' scubaduck/static/js/time series_chart.js let resizeObserver = null; let currentChart = null; function showTimeSeries(data) { function parseTs(s) { if (s.match(/GMT/) || s.endsWith('Z') || /\+\d{2}:?\d{2}$/.test(s)) { return new Date(s).getTime(); } return new Date(s + 'Z').getTime(); } const view = document.getElementById('view'); if (data.rows.length === 0) { view.innerHTML = '<p id="empty-message">Empty data provided to table</p>'; return; } const height = 600; view.innerHTML = '<div id="ts-container"><div id="legend"></div><div id="chart-wrapper"><svg id="chart" height="' + height + '"></svg></div></div>'; const svg = document.getElementById('chart'); const legend = document.getElementById('legend'); const crosshairLine = document.createElementNS('http://www.w3.org/2000/svg', ' line'); crosshairLine.id = 'crosshair_line'; crosshairLine.setAttribute('stroke', '#555'); crosshairLine.style.display = 'none'; const crosshairDots = document.createElementNS('http://www.w3.org/2000/svg', ' g'); crosshairDots.id = 'crosshair_dots'; crosshairDots.style.display = 'none'; const groups = groupBy.chips || []; const hasHits = document.getElementById('show_hits').checked ? 1 : 0; const fill = document.getElementById('fill').value; const bucketMs = (data.bucket_size || 3600) * 1000; const start = data.start ? parseTs(data.start) : null; const end = data.end ? parseTs(data.end) : null; const startIdx = 1 + groups.length + hasHits; const valueCols = selectedColumns.slice(groups.length + hasHits); const series = {}; data.rows.forEach(r => { const ts = parseTs(r[0]); const groupKey = groups.map((_, i) => r[1 + i]).join(':') || 'all'; valueCols.forEach((name, i) => { const val = Number(r[startIdx + i]); const key = groupKey === 'all' ? name : groupKey + ':' + name; if (!series[key]) series[key] = {}; series[key][ts] = val; }); }); const buckets = []; let minX = start !== null ? start : Infinity; let maxX = end !== null ? end : -Infinity; if (start !== null && end !== null) { for (let t = start; t <= end; t += bucketMs) { buckets.push(t); } } else { Object.keys(series).forEach(k => { const s = series[k]; Object.keys(s).forEach(t => { const n = Number(t); if (n < minX) minX = n; if (n > maxX) maxX = n; }); }); for (let t = minX; t <= maxX; t += bucketMs) { buckets.push(t); } } let minY = Infinity, maxY = -Infinity; Object.keys(series).forEach(key => { const vals = series[key]; buckets.forEach(b => { const v = vals[b]; const val = v === undefined && fill === '0' ? 0 : v; if (val === undefined) return; if (val < minY) minY = val; if (val > maxY) maxY = val; }); }); if (fill === '0') { if (minY > 0) minY = 0; if (maxY < 0) maxY = 0; } const colors = [ '#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2' ]; currentChart = { svg, legend, series, buckets, minX, maxX, minY, maxY, fill, colors, height, crosshairLine, crosshairDots, seriesEls: {}, bucketPixels: [], xScale: null, yScale: null, selected: null, frozen: false }; const intervals = [ {unit: 'second', step: 1, ms: 1000}, {unit: 'second', step: 2, ms: 2000}, {unit: 'second', step: 5, ms: 5000}, {unit: 'second', step: 10, ms: 10000}, {unit: 'second', step: 15, ms: 15000}, {unit: 'second', step: 30, ms: 30000}, {unit: 'minute', step: 1, ms: 60000}, {unit: 'minute', step: 2, ms: 120000}, {unit: 'minute', step: 5, ms: 300000}, {unit: 'minute', step: 10, ms: 600000}, {unit: 'minute', step: 15, ms: 900000}, {unit: 'minute', step: 30, ms: 1800000}, {unit: 'hour', step: 1, ms: 3600000}, {unit: 'hour', step: 2, ms: 7200000}, {unit: 'hour', step: 3, ms: 10800000}, {unit: 'hour', step: 4, ms: 14400000}, {unit: 'hour', step: 6, ms: 21600000}, {unit: 'hour', step: 12, ms: 43200000}, {unit: 'day', step: 1, ms: 86400000}, {unit: 'day', step: 2, ms: 172800000}, {unit: 'week', step: 1, ms: 604800000}, {unit: 'week', step: 2, ms: 1209600000}, {unit: 'month', step: 1}, {unit: 'month', step: 3}, {unit: 'month', step: 6}, {unit: 'year', step: 1}, {unit: 'year', step: 2}, {unit: 'year', step: 5}, {unit: 'year', step: 10} ]; function chooseInterval(start, end) { const span = end - start; function approxMs(i) { if (i.ms) return i.ms; if (i.unit === 'month') return i.step * 2629800000; if (i.unit === 'year') return i.step * 31557600000; return 1000; }

For timeseries, selectedColumns are set based on group and hit options, and bucket index is used.

In table view with count aggregator, avoid including "count(*) AS Count" in query.

When columns are selected, show "Count" for each column in table view, not omit it.

I need to check tests for aggregate "Count" with selected columns and compare.

shell
root@3f0164aeb2f9:/workspace/scubaduck# grep -n "aggregate\": \"Count\"" -r test s | head -n 20 tests/test_server_errors.py:59: "aggregate": "Count", tests/test_server_time.py:67: "aggregate": "Count", tests/test_server_timeseries.py:71: "aggregate": "Count", tests/test_server_timeseries.py:143: "aggregate": "Count",

I'll check tests/test_server_time.py, specifically the part involving the aggregator Count.

shell
root@3f0164aeb2f9:/workspace/scubaduck# sed -n '60,80p' tests/test_server_time.p y payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-01 01:00:00", "graph_type": "timeseries", "granularity": "1 hour", "columns": ["event"], "aggregate": "Count", "time_column": "created", "time_unit": "ms", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 2 def test_integer_time_unit_us_default_start_end(tmp_path: Path) -> None: csv_file = tmp_path / "events.csv"

It appears the code is returning extra columns when using count aggregation with "event."

Timeseries isn't showing "event" correctly due to a mismatch with aggregator count and selectedColumns.

Need to modify query not to include "Count" column for table views with aggregator count.

I'll create a test for server queries with aggregate count and show_hits for 'extra'.

I'll check how the server handles time_column="" and ensure the correct SQL query is generated.

I’ll check for tests in test_server_basic or test_server_timeseries, using "extra" as a search term.

shell
root@3f0164aeb2f9:/workspace/scubaduck# grep -n "extra" -r tests | head -n 20 tests/test_multi_table_web.py:29: select_value(page, "#table", "extra") tests/test_multi_table_web.py:36: assert table_param == "extra" tests/test_multi_table_web.py:44: select_value(page, "#table", "extra") tests/test_multi_table_web.py:50: assert page.input_value("#table") == "extra " tests/test_multi_table_web.py:52: assert disp is not None and disp.strip() == "extra" tests/test_multi_table_web.py:67: select_value(page, "#table", "extra") tests/test_multi_table_web.py:68: page.wait_for_function("document.querySelec tor('#table').value === 'extra'") tests/test_server_timeseries.py:257: "table": "extra",

I'm debating whether to add the test in test_server_basic or test_server_timeseries. Let’s check the style of test_server_timeseries.

shell
py app = server.app client = app.test_client() payload: dict[str, Any] = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "order_by": "Samples", "order_dir": "DESC", "x_axis": "timestamp", "granularity": "1 day", "columns": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert 'ORDER BY "Hits" DESC' in data["sql"] def test_show_hits_client_side() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "columns": ["value"], "group_by": ["user"], "aggregate": "Sum", "show_hits": False, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert "count(*) AS Hits" in data["sql"]

I'll examine the earlier tests near test_reserved_word_column to match the style.

shell
"filters": [], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert data["rows"][0][1] == 20 def test_timeseries_derived_column() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "timeseries", "granularity": "1 hour", "limit": 7, "columns": ["value"], "derived_columns": {"derived_1": "value * 2"}, "aggregate": "Avg", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 rows = data["rows"] assert all(r[3] == r[2] * 2 for r in rows) def test_reserved_word_column() -> None: app = server.create_app("TEST") client = app.test_client() payload = { "table": "extra", "columns": ["ts", "desc"], "order_by": "ts", "time_column": "", } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert len(data["rows"]) == 2 assert data["rows"][0][1] == "x"

I'll add a test for count with group_by, sorting rows, and verifying no "Count" column.

I’m opening codex_setup.sh to ensure the .venv environment is properly set up.

shell
uv sync --frozen source .venv/bin/activate python -c "import os; import duckdb; con = duckdb.connect(); con.execute(f\"SET http_proxy = '{os.getenv(\"HTTP_PROXY\")}'\"); con.execute(\"INSTALL 'sqlite';\" )" playwright install chromium echo "source .venv/bin/activate" >> ~/.bashrc

I need to activate the virtual environment by running source .venv/bin/activate.

shell
root@3f0164aeb2f9:/workspace/scubaduck# source .venv/bin/activate (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

I'll start by running targeted server tests, then run full checks after the patch.

shell
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# git status --short
server.py f"TIMESTAMP '{params.start}' + INTERVAL '{sec} second' * " f"CAST(floor((epoch({xexpr}) - epoch(TIMESTAMP '{params.start}') )/{sec}) AS BIGINT)" ) else: bucket_expr = ( f"TIMESTAMP 'epoch' + INTERVAL '{sec} second' * " f"CAST(floor(epoch({xexpr})/{sec}) AS BIGINT)" ) select_parts.append(f"{bucket_expr} AS bucket") group_cols = ["bucket"] + group_cols selected_for_order.add("bucket") has_agg = bool(group_cols) or params.aggregate is not None if has_agg: select_cols = ( group_cols[1:] if params.graph_type == "timeseries" else group_cols ) select_parts.extend(_quote(c) for c in select_cols) agg = (params.aggregate or "count").lower() selected_for_order.update(group_cols) def agg_expr(col: str) -> str: expr = _quote(col) ctype = column_types.get(col, "").upper() if column_types else "" if "BOOL" in ctype: expr = f"CAST({_quote(col)} AS BIGINT)" if agg.startswith("p"): quant = float(agg[1:]) / 100 return f"quantile({expr}, {quant})" if agg == "count distinct": return f"count(DISTINCT {expr})" if agg == "avg" and column_types is not None: if "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype: return ( "TIMESTAMP 'epoch' + INTERVAL '1 second' * " f"CAST(avg(epoch({_quote(col)})) AS BIGINT)" ) return f"{agg}({expr})" if agg == "count": select_parts.append("count(*) AS Count") selected_for_order.add("Count") else: for col in params.columns: if col in group_cols: continue select_parts.append(f"{agg_expr(col)} AS {_quote(col)}") selected_for_order.add(col) select_parts.insert(len(group_cols), "count(*) AS Hits") selected_for_order.add("Hits") else: select_parts.extend(_quote(c) for c in params.columns) selected_for_order.update(params.columns) order_by = params.order_by if order_by == "Samples": (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

Time to make some tweaks and apply a fix to this part.

shell
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# apply_patch<<'PATCH' > *** Begin Patch > *** Update File: scubaduck/server.py > @@ > - if agg == "count": > - select_parts.append("count(*) AS Count") > - selected_for_order.add("Count") > + if agg == "count": > + if params.graph_type != "table": > + select_parts.append("count(*) AS Count") > + selected_for_order.add("Count") > *** End Patch > PATCH Success. Updated the following files: M scubaduck/server.py (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

I'll add a new server test, maybe after the "test_reserved_word_column" one.

shell
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# tail -n 20 tests/test_server _timeseries.py def test_show_hits_client_side() -> None: app = server.app client = app.test_client() payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "columns": ["value"], "group_by": ["user"], "aggregate": "Sum", "show_hits": False, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 assert "count(*) AS Hits" in data["sql"] (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

I’ll add the new test either before or after, and patch as needed.

shell
> *** Begin Patch > *** Update File: tests/test_server_timeseries.py > @@ > def test_reserved_word_column() -> None: > @@ > assert len(data["rows"]) == 2 > assert data["rows"][0][1] == "x" > + > + > +def test_table_count_group_by_extra() -> None: > + app = server.create_app("TEST") > + client = app.test_client() > + payload = { > + "table": "extra", > + "graph_type": "table", > + "time_column": "", > + "group_by": ["num"], > + "aggregate": "Count", > + "columns": [], > + } > + rv = client.post( > + "/api/query", data=json.dumps(payload), content_type="application/jso n" > + ) > + data = rv.get_json() > + assert rv.status_code == 200 > + rows = sorted(data["rows"]) > + assert rows == [[1, 1], [2, 1]] > + assert all(len(r) == 2 for r in rows) > *** End Patch > PATCH Success. Updated the following files: M tests/test_server_timeseries.py
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# ruff format scubaduck/server .py tests/test_server_timeseries.py 2 files left unchanged
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# ruff check scubaduck/server. py tests/test_server_timeseries.py All checks passed!
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# pyright
/workspace/scubaduck/tests/test_server_errors.py /workspace/scubaduck/tests/test_server_errors.py:65:5 - error: Variable "data" is not accessed (reportUnusedVariable) 1 error, 0 warnings, 0 informations (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

I see an error at line 65 in tests/test_server_errors.py. I'll check the file.

shell
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# sed -n '60,70p' tests/test_s erver_errors.py "show_hits": True, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 def test_samples_view_rejects_group_by() -> None: app = server.app
erver_errors.py payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "order_by": "timestamp", "limit": 100, "columns": ["user", "Hits", "value"], "group_by": ["user"], "aggregate": "Count", "show_hits": True, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 def test_samples_view_rejects_group_by() -> None: app = server.app client = app.test_client() payload = { "table": "events", "graph_type": "samples", "group_by": ["user"], "columns": ["timestamp"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

I'll open more lines to check the rest since the path got truncated.

shell
erver_errors.py "show_hits": True, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 def test_samples_view_rejects_group_by() -> None: app = server.app client = app.test_client() payload = { "table": "events", "graph_type": "samples", "group_by": ["user"], "columns": ["timestamp"], } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 400 assert "only valid" in data["error"] (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

Pyright is warning about 'data' being unused, even though get_json() is called. Let's check for config changes.

shell
[project] name = "scubaduck" version = "0.1.0" description = "Scuba on DuckDB" readme = "README.md" requires-python = ">=3.12" license = {text = "MIT"} dependencies = [ "duckdb", "flask", "python-dateutil>=2.9.0.post0", ] [build-system] requires = ["hatchling"] build-backend = "hatchling.build" [tool.pytest.ini_options] addopts = "-n auto --tb=native" [tool.pyright] # Pyright configuration with strict settings include = ["scubaduck", "tests"] exclude = ["**/__pycache__", "dist"] stubPath = "stubs" venvPath = "." venv = ".venv" reportMissingImports = true reportMissingTypeStubs = true pythonVersion = "3.12" pythonPlatform = "All" typeCheckingMode = "strict" reportUnknownMemberType = true reportUnknownParameterType = true reportUnknownVariableType = true reportUnknownArgumentType = true reportPrivateImportUsage = true reportUntypedFunctionDecorator = true reportFunctionMemberAccess = true reportIncompatibleMethodOverride = true [tool.ruff] target-version = "py312" [tool.uv] dev-dependencies = [ "pytest>=8.3.5", "ruff>=0.11.2", "pytest-xdist>=3.6.1", "playwright>=1.52.0", "pyright>=1.1.350", "pytest-playwright>=0.7.0", ] (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

I'm reviewing the line numbers and the config to fix any unused variable errors.

shell
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# nl -ba tests/test_server_err ors.py | sed -n '55,75p' 55 "order_by": "timestamp", 56 "limit": 100, 57 "columns": ["user", "Hits", "value"], 58 "group_by": ["user"], 59 "aggregate": "Count", 60 "show_hits": True, 61 } 62 rv = client.post( 63 "/api/query", data=json.dumps(payload), content_type="applicatio n/json" 64 ) 65 data = rv.get_json() 66 assert rv.status_code == 200 67 68 69 def test_samples_view_rejects_group_by() -> None: 70 app = server.app 71 client = app.test_client() 72 payload = { 73 "table": "events", 74 "graph_type": "samples", 75 "group_by": ["user"], (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

The variable is defined but not used. I'll check lines around 60 for potential fixes.

shell
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# sed -n '50,70p' tests/test_s erver_errors.py payload = { "table": "events", "start": "2024-01-01 00:00:00", "end": "2024-01-03 00:00:00", "graph_type": "table", "order_by": "timestamp", "limit": 100, "columns": ["user", "Hits", "value"], "group_by": ["user"], "aggregate": "Count", "show_hits": True, } rv = client.post( "/api/query", data=json.dumps(payload), content_type="application/json" ) data = rv.get_json() assert rv.status_code == 200 def test_samples_view_rejects_group_by() -> None: app = server.app (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

I'll rename the variable on line 65 to _ = rv.get_json() or remove it.

shell
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# apply_patch<<'PATCH' > *** Begin Patch > *** Update File: tests/test_server_errors.py > @@ > - rv = client.post( > - "/api/query", data=json.dumps(payload), content_type="application/jso n" > - ) > - data = rv.get_json() > - assert rv.status_code == 200 > + rv = client.post( > + "/api/query", data=json.dumps(payload), content_type="application/jso n" > + ) > + _ = rv.get_json() > + assert rv.status_code == 200 > *** End Patch > PATCH Success. Updated the following files: M tests/test_server_errors.py (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

I'll run ruff format and check the file once more for issues.

shell
r_errors.py tests/test_server_timeseries.py scubaduck/server.py 3 files left unchanged
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# ruff check tests/test_server _errors.py tests/test_server_timeseries.py scubaduck/server.py All checks passed! (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

I’ll give pyright another go to see if anything changes.

shell
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# pyright
0 errors, 0 warnings, 0 informations (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

Pyright passed! Now I'll go ahead and run pytest as instructed.

shell
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# pytest -q
bringing up nodes...






........................................................................ [ 59%]

................................................. [100%] 121 passed in 15.46s (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

All tests have passed (121 tests). Time to commit the changes!

shell
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# git status --short M scubaduck/server.py M tests/test_server_errors.py M tests/test_server_timeseries.py (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

I'll commit with the message: "fix: table view count aggregator extra column."

shell
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# git add scubaduck/server.py tests/test_server_errors.py tests/test_server_timeseries.py
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# git commit -m "fix(server): drop duplicate count column in table view" && git status --short [work 56f6016] fix(server): drop duplicate count column in table view 3 files changed, 25 insertions(+), 3 deletions(-) (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

I’ll quickly confirm the current state of the commits.

shell
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# git status --short (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

I'll summarize the changes and add relevant citation lines from server.py to the PR.

shell
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# nl -ba scubaduck/server.py | sed -n '290,308p' 290 if agg == "avg" and column_types is not None: 291 if "TIMESTAMP" in ctype or "DATE" in ctype or "TIME" in ctype: 292 return ( 293 "TIMESTAMP 'epoch' + INTERVAL '1 second' * " 294 f"CAST(avg(epoch({_quote(col)})) AS BIGINT)" 295 ) 296 return f"{agg}({expr})" 297 298 if agg == "count": 299 if params.graph_type != "table": 300 select_parts.append("count(*) AS Count") 301 selected_for_order.add("Count") 302 else: 303 for col in params.columns: 304 if col in group_cols: 305 continue 306 select_parts.append(f"{agg_expr(col)} AS {_quote(col)}") 307 selected_for_order.add(col) 308 select_parts.insert(len(group_cols), "count(*) AS Hits") (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

I need to capture the lines around the new test in test_server_timeseries.py.

shell
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# nl -ba tests/test_server_tim eseries.py | sed -n '252,288p' 252 253 def test_reserved_word_column() -> None: 254 app = server.create_app("TEST") 255 client = app.test_client() 256 payload = { 257 "table": "extra", 258 "columns": ["ts", "desc"], 259 "order_by": "ts", 260 "time_column": "", 261 } 262 rv = client.post( 263 "/api/query", data=json.dumps(payload), content_type="applicatio n/json" 264 ) 265 data = rv.get_json() 266 assert rv.status_code == 200 267 assert len(data["rows"]) == 2 268 assert data["rows"][0][1] == "x" 269 270 271 def test_table_count_group_by_extra() -> None: 272 app = server.create_app("TEST") 273 client = app.test_client() 274 payload = { 275 "table": "extra", 276 "graph_type": "table", 277 "time_column": "", 278 "group_by": ["num"], 279 "aggregate": "Count", 280 "columns": [], 281 } 282 rv = client.post( 283 "/api/query", data=json.dumps(payload), content_type="applicatio n/json" 284 ) 285 data = rv.get_json() 286 assert rv.status_code == 200 287 rows = sorted(data["rows"]) 288 assert rows == [[1, 1], [2, 1]] (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

I'll make sure to include the assert statement checking the row lengths are consistent.

shell
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# nl -ba tests/test_server_tim eseries.py | sed -n '288,300p' 288 assert rows == [[1, 1], [2, 1]] 289 assert all(len(r) == 2 for r in rows) 290 291 292 def test_order_by_samples_table() -> None: 293 app = server.app 294 client = app.test_client() 295 payload: dict[str, Any] = { 296 "table": "events", 297 "start": "2024-01-01 00:00:00", 298 "end": "2024-01-03 00:00:00", 299 "graph_type": "table", 300 "order_by": "Samples", (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

I’m grabbing the snippet from the modified line in test_server_errors for the _ variable.

shell
(scubaduck) root@3f0164aeb2f9:/workspace/scubaduck# nl -ba tests/test_server_err ors.py | sed -n '60,68p' 60 "show_hits": True, 61 } 62 rv = client.post( 63 "/api/query", data=json.dumps(payload), content_type="applicatio n/json" 64 ) 65 _ = rv.get_json() 66 assert rv.status_code == 200 67 68 (scubaduck) root@3f0164aeb2f9:/workspace/scubaduck#

Time to create the commit message and put together the PR. Let's do this!